a2 United States Patent

Tago et al.

US009465860B2

US 9,465,860 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)
(52)

(58)

(56)

2006/0020638 Al*
2007/0094313 Al*

STORAGE MEDIUM, TRIE TREE
GENERATION METHOD, AND TRIE TREE
GENERATION DEVICE

Inventors: Shinichiro Tago, Kawasaki (JP);
Tatsuya Asai, Kawasaki (JP)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 13/137,818

Filed: Sep. 14, 2011

Prior Publication Data

US 2012/0005234 Al Jan. 5, 2012

Related U.S. Application Data

Continuation of application
PCT/IP2009/055521, filed on Mar. 19, 2009.

No.

Int. CL.

GO6F 17/30 (2006.01)

U.S. CL

CPC . GO6F 17/30625 (2013.01)

Field of Classification Search
None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

1/2006 Shadmon
4/2007 Bolotin

707/200
707/205

2007/0150497 Al* 6/2007 De La Cruz et al. 707/101
2008/0114765 Al* 52008 Asaietal 70777
2008/0270435 Al* 10/2008 Furusho 707/101

FOREIGN PATENT DOCUMENTS

AU 60999/90 4/1991
EP 1 063 827 A2 12/2000
JP 59-47669 3/1984
JP 3-122766 5/1991
JP 11-7451 1/1999
JP 2000-324172 11/2000

OTHER PUBLICATIONS

International Search Report for PCT/JP2009/055521, mailed Apr.
21, 2009.

“Radix Tree”, Wikipedia. http://ja.wikipedia.org/wiki%ES5%
9F%BA%EG6%95%B0%E6%9C%A8 Mar. 17, 2009.

Kenshin Yamada et al., “Address Resolution Engine for IP Rout-
ing”, Technical Report of IEICE, Sep. 24, 1998, vol. 98, No. 297,

pp. 1-6.
* cited by examiner

Primary Examiner — Yuk Ting Choi
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A retrieval device according to the present embodiment
associates one tag key with one node and removes a node not
having a tag key when a trie tree generating unit generates
a trie tree. Moreover, because a tag key having a low priority
is registered in a node close to a root node when the trie tree
generating unit registers tag keys in the nodes of the trie tree,
the retrieval device can narrow down a node region that is
a comparison target when a trie tree searching unit performs
a retrieval process.

12 Claims, 52 Drawing Sheets

black |/| 1

b |

s

TRIE TREE
~

3
blue I

4
grey I 5 | 2 |

greenyellow :]

1

U.S. Patent Oct. 11, 2016 Sheet 1 of 52 US 9,465,860 B2

TRIE TREE
J
. g -~ ELDER NODE
§ ‘ ,— ELDEST NODE
. DESCENDANT NODE
PARENT / 4{ CHILDNODE ;
ROOT NODE NODE / / "= bl . :
AN S ey 4 REFERENCE; / 5 ;
: N NODE ! ‘ ; ‘ E
ANCESTRAL i ‘ P) ‘
NODE .) ' ' '
E . |-~ YOUNGER NODE
TRIE TREE
P
black 1 3
A
blue
4
b |
A green 3
grey 5 2
greenyellow
» 1
g r e

U.S. Patent Oct. 11, 2016 Sheet 2 of 52 US 9,465,860 B2

TRIE TREE
Jas
black 113
/
blue
4
b I
| green
<
greenyellow
ROOT NODE 3 <
\ 1
grey
9 r e 512

COMPARISON
TARGET NODE A

US 9,465,860 B2

Sheet 3 of 52

Oct. 11, 2016

U.S. Patent

19[01A9N|q

aniq

»oe|q

anbsiq

ablaq

G old

J9joinan|g>aniq

19|01A8N|q

v le

anjg>yoelq

oelq

A

-

Y

anbsiq

abiaq

U.S. Patent Oct. 11, 2016 Sheet 4 of 52 US 9,465,860 B2

FIG.6

,I eviolet

3

US 9,465,860 B2

Sheet 5 of 52

Oct. 11, 2016

U.S. Patent

3NIvA 3QON
aNvA
fm AN OVL
)
AIM OV1 AYA -
a0 ~-30ON A3 OV JqON
N 300N
INTVYA— > 7l
c X3 OVL
N A3 OV1
oq
AT OVL 3AON 3AON |f 5 vA 300N A3IX OVL 3AON 3AON
INvA— ¢ 3JAON | z A3 OVL
w e
qed 3NIvA qeo p LY
3JAON AN OVL
’ . | 3QON
AN OVL
3 eee e
3NTvA
3NTVA | eeee) ») T
v 300N A3y ovl AINOVL
AIN OVL
- 7
NOILNIANI 3341 VIOLYd
SIHL 40 3341 1ML

U.S. Patent Oct. 11, 2016 Sheet 6 of 52 US 9,465,860 B2

FIG.8

A 4
N

eige

ack > 1 3

Y.
w

eviolet

US 9,465,860 B2

Sheet 7 of 52

Oct. 11, 2016

U.S. Patent

3NTvA 3JAON 4v3al

¢ m3f<>
S 5 3QO0N A3 OV1
TYNHILNI S (
ADI OVL
qe ANTYA 300N qed 3AdON
3AON 4V q /37 A3 OVL TYNSILNI
anva— ¥ e 3QON 4v3a1 a
A
€
ANTVA 3AON
@ TYNYILNI H A OYL A3 mw< "
A} OVL~{ 2qe 3AON 3Aa0N 300N
A OVL IYNYAINIL] 3niva JQON A OVL TVNMILINI TYNNILNI
IVNN3LNI
anvA-—1 ¢ S S 3IdON 4v3a1 r4 AT OVL "
anva”)
A3 OVL~] 9%° geo)
300N dvI1 X _ 3doN AT OVL
3JAON 4va TYNHILNI
b
L
N eee e
INTVA
3INTVA | eeee § §
A3 OVL AT OVL
y 3AON 4va
A3 OV1
I -
IN3Wigoaw3 3341 VIORLvd
40 3341 3L

6 Old

U.S. Patent Oct. 11, 2016 Sheet 8 of 52 US 9,465,860 B2

FIG.10

£100

RETRIEVAL DEVICE

¢110 ¢130 ¢150 ¢140

CONTROL UNIT STORAGE UNIT
¢150a ¢140a

TRIE TREE REGISTRATION

GENERATING DATA
UNIT MANAGEMENT
— TABLE
¢150b

TRIE TREE

SEARCHING
UNIT TRIE TREE

I |

INPUT UNIT

(120

OUTPUT UNIT

¢140b

INPUT-OUTPUT
CONTROL UNIT

FIG.11

140a

KEY VALUE

beige 2

black 1

green 4

black 3

U.S. Patent Oct. 11, 2016 Sheet 9 of 52 US 9,465,860 B2

eige ~140b
A
2 ack
113
b |
ROOT NODE g 4
reen
ROOT NODE | _140b
POINTER pOINTER ARRAY POINTERARRAY POINTER ARRAY
10 11 12
5 N N
0% oo FNULL 0% 00 LNULL 0% 00 LNULL
NULL ox01| NULL 0x01| NULL
oxe2| ® -+ | NULL -« I NULL
[NULL . | NULL -« | NULL
0x67| @ = [NULL .« | NULL
-+ | NULL Ox6c| e - | NULL
0xFE [NULL . INULL - | NULL
OXFF| NULL 0xFF | NULL O0XFF| NULL
vl | S e
ata| NULL ata &t Data @
[oxoo-NULL
0x01] NULL TEX:lr4TABLE
ot NULL \ 4
NULL blelyi[gle
NULL blilalc|k
NULL glrlefeln
NULL 1
0xFF| NULL
TAG °
Data 0—
)
13
POINTER ARRAY

US 9,465,860 B2

Sheet 10 of 52

Oct. 11, 2016

U.S. Patent

\

4
slolslols]elcl2]Z]9
alolclol+[o[2[9]c|9
s|lofz]o]e]o]s|Az]9
J A
TINN | eyeq
¢ |eerq e |OvlL
o |ovL i TINN | 4%0
L |2V TINN |3 x0
) ¢ |=ea A
— _[9VL N
TINN |4 %0
TINN * |90
o [,
HE TINN 0 OVv14
o J|zxo0
¢ |eleQ TINN | L x0 A_.m_
e |OvlL TINN [0 x0
A 0o |2vid 205N L0
N)
AA XX

AVHYEY H3LNIOd AVHYY H431INIOd

vVivavy

N\

996969¢.

g9€919°9

4

697969592 |

=

JOVINI V1vad L

-

g

(NOILVLON TYWIDIAVX3H))
Y31 OVHVYHD 3NO LISt

€ 'q9€9199929X0
¥ '99G9592/.9%0
} '49€9199929%0
C 'G929695929%0

del Old

€ "oelq

 ‘usalb
AU | ‘¥oelq

¢ ‘obleq
3NIvA ‘AN <.r<ol\

U.S. Patent Oct. 11, 2016 Sheet 11 of 52 US 9,465,860 B2

-
o
ke
>
™
)
o
X
3]
© <
>
)
=] < ®
o
m —
-
o
Ry
0 |« o o~

FIG.14
ROOT NODE

-
Q2
Kl
>
o
X
[$3
@©
()
) =
3
(o
(]
< ™
$ s
)
Q o~

ROOT NODE

US 9,465,860 B2

Sheet 12 of 52

Oct. 11, 2016

U.S. Patent

(az1S 431s)
31gavl

1X3L

veL Lol /ielele] Telelel Il L

_H_Anlo ejeq TINN | ejeq
°_Jow [1 OYL A3x LndNI
TINN [344x%0 TINN | 44%0
TINN |34 %0 TN
R + 89x0
LLLAY [TION 190 x0
TINN e TINN fe——F—]
z M o ¥IINIOd
AVHMY HEINIOd AVMMY NIINIOd S ooN L00d

(aL1S d431S)

_f__w_;m_m_m_._m_m_m___”_a_;;;_

W AN ._.sz_.w

(eZLS d319)

Jo/eee eee//.dn

(118 4319)

/o/eeeeee//:dyy

O

vl
I1gvl X3l [inN]erea
_HT.I. Ov1 AN LNdNI
TINN {44 %0
TINN |34 %0
7NN - (e0LS 4319)
(@oLs d31s) | 7NN 00X0
TINN A|MH_ 3AON LOOY
\ Y3INIOd
(1}4 3JON 100y
AVHYEY ¥3LNIOd

US 9,465,860 B2

Sheet 13 of 52

Oct. 11, 2016

U.S. Patent

(#1S d319)
/
aol/1a]/]elele| |elelel/]/]:ld]313]u :
L D M T BT R T TE R T T T eI T 0] Ay Lnani— | Prereeeeeeidny | _
/e/eee eee/s.dy
(AgLs d3Ls) /
. - ld
E S T= V7ML il Al I i il A KA il
$L - alslelelel lelefelsl/]:1dj3l3]y
A
[Vlefe] Jeea 11NN |ejeg (e€1S d31s)
d Jowr [Je— Jow ,55Tnan
TINN {44 %0 TINN |44 %0
TINN {34 %0 TINN| -
TINN| - e |[89%0 AIM LNdNI -~ [o/ereeeeee)diy _
TINN oo.w.o TINN oawo
TINN |e¢ 11NN A|m jo/eeeeee//.dy
_‘mu 4y om\ {3LNIOd
AVHYY Y¥3ILINIOd AVHYY 431NIOd 300N 100N

]

3AdON LN3S3dd

91'9I4

US 9,465,860 B2

Sheet 14 of 52

Oct. 11, 2016

U.S. Patent

(a91S d319)

JavLixX3l |;

i~

]

ol B
NE=
_CI.:: ~

(egis d4318)

/ore/eeeeee/):dy

foreeeeee/;.dy

(eG1S 4315)

Jorereee-eeeysdiy _

| |eeq EAllo eleq 1NN |eleq
$ love d |ovi [Jet—= |ows
TINN | 44%0 TINN | 440 TINN f44x0
TINN |34%0 e |bLx0 TINN |
TINN NN e |89x0
NON | o TN | 0o TN | 0o
TINN | TINN fe TN fe——F—]
Nﬂ) Fﬂ y om\ ¥31NIOd 3AON LOOYH
AVHYY H3INIOd AVHYY ¥ILINIOd AVHYVY ¥IINIOJ
/
(a51S 4318) sl el Telelel Telelel/ |/ “h;
37avL 1x3L &l
i~ 712/ Telelel felelel/]/ R
x
TINN |eleqg HA:I. eleq TINN jeleqg
TINN_fove d Jowi [Jef—= low Fimawm
TINN |44 %0 TINN | 44%0 TINN {44x0
TINN |34%0 e |¥zxo0 TINN |
TINN TINN e |89x0
A LNGNI
0N | o TN | o TN | 00
TINN |« TINN | TN Je—F—]
Nm\) Fﬂ 1ty 0z Y3 INIOd 3AON 100Y
AVNNY AVNYY AVHYY H31NIOd
¥3ALNIOd ¥3LNIOd

]

300N 1N3IS3dd

fofeee eee//.dy

L1'Old

US 9,465,860 B2

Sheet 15 of 52

Oct. 11, 2016

U.S. Patent

/
(agLs d3Ls) abyirjul |/
3G E (eg1S d318)
318vL 1X3L ttetettetete AUE Mﬂ P2 ¥
v |/]®]/ 9 AD PPy ———
=1 1NdNI-"| .
HA:I. eleq HAnIo eleg TINN | eleq _H
ovi Vov [(Je— |om AN 1NdNI PIoreee eeel &
TINN | 34%0 TINN | 34 %0 TINN | 44%0
TINN | 34%0 pLX0 TN Jo/eee eee;/.dn
TN | - TION| - 89%0
TINN |- TN | TION] o
X X 00x0
TINN “8 0 TINN uoo 0 TINN A|m_
Nﬂ) mm y oﬂ H3ILNIOd 3AON LOOY
AVHYY AVHYY HILNIOd AVHYY ¥3LINIOd
¥3INIOd e 7
IN3SIud [l |7
CIE
(4215 d31S) gy 1xal | Al AP I
v~ 1/]2]/}elele mmm\\.auﬁ_c
Al
HAlI. eleqg HAlIo eleq TINN | eleq B (/1S 43LS)
ovL Vdovi [J— lovi ,STram
TINN | 49 %0 TINN | 44 %0 TINN |44 %0 prys— .9%
TINN | 34%0 . |rexo TN AT LANI— 1A
TINN| - TN 890
NN TINN 7NN [o/9/eeeeee)r.dy
N 180%0 = .00%0 00X 0 ==
Nﬂ LI Fﬂ y oﬂ ¥3ALNIOd IQON LOOY /ojeee eee;|.dy
AVHYY AVHHY AVHYY ¥3LNIOd
¥3LINIOd _H_ H3LNIOd
3QON LN3S3ud

81 9Old

US 9,465,860 B2

Sheet 16 of 52

Oct. 11, 2016

U.S. Patent

B \
elele elefe d
(@ozs daLs) Jawn [Pl AUREHaCIN (e0Z8 d3L8)
o\w\mmm.mmm\\”%«ul.c “
m._m<.r._.xw+(\, el Ele el T 19 [AT . .1
—) LN~ [o/ereeeeee/dpy
_HTnlo ejeq Hflo _ ejeq TINN |eleqg
> jovl d Jowr [= Jovi ,gTnam foreee eeei
TINN 44 x0 TINN 44 %0 TINN | 44x0
TINN |34%0 e |¥Zx0 TINN| - /preeeeee//dy
TNN| - TN | - e |89%0
TN TINN |- TN | 27
X 00x0 00x0
TINN “8 0 TINN |e TINN A|m _
= 7 =
44 } Y 0z ¥3INIOd 3AON 100N
AVHYEY
SHLNIOd AVHYHY ¥IINIOd AVHNY ¥3LNIOd
J0ON LNISTud !
H pi/lelele] lelelel/|/]:-|d]]yiul |/
@eis d31s) anwvanant 1217121 /1ele]e] 1ele]e]/]/ ”%«Ll..c
vi—1 |/712]/]elele mmm\\“a«:c
37gvL 1X3L -1
— =]
Hflo ejeqg HAllo ejeq 1NN | ejeq H..U (e61S d3LS)
°_{owi ovi [Jef— owr ,g5Tman _H_ v
TINN |44 %0 TINN [34%0 TINN | 34%0 pps———
TINN |34 %0 o |¥Zx0 TINN | - A LnaNi—] P /1-GRY
TINN| - TINN| - e [89%0 -
[ojereee eeg;/.d)
TN | oo TN | TN 150
TINN e TINN e NN A|m_
& 3 2u o Y3LNIOd 3AON 100 /preee eee;/.dy
AVHYY v AVHYHY ¥3LNIOd
¥3INIOd AVHYY
3QON IN3STHd d3INIOd

619l

U.S. Patent

Oct. 11, 2016

Sheet 17 of 52

US 9,465,860 B2

ttp://aaa.aaal/d/
3 tp://aaa.aaale/ (STEP S21a)
1
http://aaa.aaale/c/ |-~INPUT KEY
A
h t t 2
PRESENT NODE
POINTER POINTER @POINTER POINTER
ARRAY ARRAY ARRAY
ROOT NODE 20 21 22 ARZ%AY
POINTER) h O t ¢ I t 5
[Ce———{nuLL » NULL » NULL > NULL
X X X
0x00 o] | X% Mno| | °X%nuo| | XN
O0x68| e -« | NULL .-~ | NULL .« | NULL
<« | NULL Ox74| e 0x74 ® O0xXFE]| NULL
INPUT OXFF|NULL 0xFF| NULL OXFF| NULL 0xFF| NULL
KEY TAG] e—p |TAG[o TAG| ¢ TAG| NULL
[
|I| Data| NULL Data o——> Data o—-> Data| NULL
¥
http://aaa.aaa/e/‘"14
-~ TEXT TABLE
hit|{Ipg:1/1/]|alalal.|alalal/|e]l/]c (STEP S21b)
/ hitjtlpl:|/1/|alalal.|ajalal/|d INPUT VALUE
/

U.S. Patent

Oct. 11, 2016

Sheet 18 of 52

US 9,465,860 B2

ttp://aaa.aaald/
3 tp://aaa.aaale/ (STEP S22a)
1
2 /{ p://aaa.aaale/c/
h t t
PRESENT NODE
PEIIQI\IIR;I‘-\EYR POINTER @ POINTER POINTER
ROOT NODE 20 AR2R1AY Al;gAY ARZ%AY
POINTER 5 h 5 t {5 t 5
[———nuLL » NULL » NULL » NULL
X X
0x00 o] | %% o | | X% Noe | | %% Nuie
0x68 ® NULL | NULL NULL
.- | NULL 0x74 . 0x74 . OxFE| NULL
INPUT OxFF| NULL O0xFF| NULL OXFF| NULL OxFF| NULL
KEY
TAG[D[] TAG| TAG| ¢ TAG| o
L:-j Data| NULL Data o—-> Data o—-» Datal| ¢
\ 2
hit{tlpll:1/]/]|ajalal.|alala|/]e]/ }EXTTABLE
hit|t |l T7 7 TaE e alEE T el T Te
/ hit|tlpl:1|/|/|alalal.]|alalal/|d
/ (STEP S22b)

U.S. Patent

Oct. 11, 2016

Sheet 19 of 52

FIG.22

US 9,465,860 B2

ttp://aaa.aaal/d/

tp://aaa.aaale/

p://laaa.aaalefc/ (STEP S23a)
3 1
2 http://aaa.aaale/ 4
A
h t t
PRESENT NODE
PEFI{%TLE(R POINTER POINTER
ROOT NODE o ARRAY ARRAY POINTER ARRAY
POINTER s h 5 t°C t 23 ¢
[—F——NuLL » NULL » NULL » NULL
X
0300 "NuLL 090 NyuLL 090 FNuLL 0% 00 rNuLL
0x68| o [NULL . |NULL .| NULL
. [NULL ox74| e 0x74| e 0xFE [NULL
INPUT OXFF| NULL O0xFF| NULL OxFF| NULL O0xFF| NULL
KEY TAG[o] TAG[¢ TAG[¢ TAG[o
Ce 1 ata[NoiL Data| |e»[3]Datal |9 Data| ¢
Y o
http"://aaa.aaa/e/ \IEXTTABLE
hllt | t | e atetat—tatetarete
Il Ihlt])t]pl:l/l/]alalal.]alalal/]d INPUT VALUE
/ hit]{t]p]:|/]/]alalal.]alala]/|e (STEP S23b)
/

U.S. Patent

Oct. 11, 2016

Sheet 20 of 52

FIG.23

US 9,465,860 B2

ttp.//aaa.aaa/d/

tp://aaa.aaale/

p://aaa.aaale/c/ (STEP S24a)
3 1
2 http://aaa.aaale/ 4
A
h t t
PRESENT NODE
POINTER POINTER @POWTER POINTER
ARRAY ARRAY ARRAY ARRAY
ROOT NODE 20 21 22 23
POINTER) h 5 t § 5 t P
[—F——{nuLL » NULL » NULL > NULL
X X X
000 I"NULL 0% 90 RuLL 0% 90 'NuLL 0% 00 rNoLL
ox68| o oo | NULL .« | NULL . | NULL
.o | NULL ox74| e Ox74| e 0 x FE | NULL
INPUT OXFF| NULL 0 xFF | NULL 0XFF| NULL OXFF] NULL
KEY TAG[o—] TAG[¢ TAG| ¢ TAG|[o
E Data | NULL Data o—-> Data 9 Data| ¢
h /1/]alalal].|alalal/le]/ \IEXTTABLEE
h|lt /1/]a al.|alalal/]el/]c
/ pl: alalal.lalalal/|d INPUT VALUE
/ sio (7|7 aialal |aiala]r]e (STEP S240)

U.S. Patent

Oct. 11, 2016

FIG.24

Sheet 21 of 52

US 9,465,860 B2

ttp://aaa.aaald/

tp://aaa.aaale/

p://aaa.aaale/c/

(STEP S25a)

http://aaa.aaale/

A

PRESENT NODE
POINTER POINTER @_POINTER POINTER
ARRAY ARRAY ARRAY ARRAY
ROOT NODE 20 21 22 23
POINTER 5 h 5 t § 5 B
[e—F——{nuLL > NULL > NULL > NULL
0x00ror] | O%%9 o] | 2% %o 000 NuLL
oxes| e [NULL . | NULL [NULL
. [NULL 0x74| o 0x74] o 0xFE | NULL
INPUT OxFF|NULL 0% FF [NULL 0xFF [NULL 0xFF| NULL
KEY TAG[o— TAG| o TAG[o TAG| o—
‘:E Data| NULL Data o—-» Data ? Data| ¢
2 v
hit]tipf:|/]/ al.|alalal/]e]/ \IEXTTABLE1
hitt[tipg: [717 al.Talala]’]e]/]c
/ hit|t]pl: alalal.]alala
| In[fltdai [l lataalitaiE]E (STEP S25b)
7l

U.S. Patent

Oct. 11, 2016

Sheet 22 of 52

US 9,465,860 B2

—OUTPUT
y KEY, TOTAL VALUE
ftp://aaa.aaa/d/ http://aaa.aaa/d/,3
A
tp://aaa.aaale/
3 p:/laaa.aaale/c/
1l a (STEP S30a)
I http://aaa.aaa/e/
2
h t t
PRESENT NODE
P/?IIR'\FIQ-II;EYR POINTER POINTER POINTER
ARRA Y
ROOT NODE 20 21 Y AR2R2A AR2F§AY
POINTER ps) h ~ t o t o
[———{nuLL » NULL » NULL > NULL
X
0300 "Norc] | ©%%wucc] | OX%Tnoc| | %% nu
0x68 ot NULL NULL NULL
<« INULL 0x74| e 0x74 o O0xXFE| NULL
INPUT OXFF| NULL OxFF| NULL OxFF| NULL 0xFF| NULL
KEY TAG| P |TAG[¢ TAG| TAG| o
r__":l Data [NULL Data >3] Data . Data ¢
\ 2 \ 4
hiitltlpl:|/|/]alalal.|alalal/]|e]/ _IEXTTABLEF‘_—E'
hilt]tlpd: [7T71alalal- [alala[7le|7]<
/ hit|tipl:[/|/]ala]lal.lalala]/]|d
Inlt]tlp]:{/]/]alalal.|alalal/]|e (STEP S30b)
/

U.S. Patent Oct. 11, 2016 Sheet 23 of 52 US 9,465,860 B2

QUTPUT
i KEY, TOTAL VALUE
A http://aaa.aaale/,5
tp:/faaa.aaale/
3 p://aaa.aaalel/c/ (STEP S31a)
114
l http://aaa.aaal/e/
2
h t t
PRESENT NODE
UUER o RUER NS
ARRAY ARRA A
ROOT NODE 20 21 22 23
POINTER ps) h 5 t S t 5
[———nNuLL > NULL > NULL > NULL
X x X
0x00rSorc] | 2% Mo | X% N | 2% o
0Ox68| e <« | NULL ..« | NULL - | NULL
.« | NULL Ox74] o 0x74 . OXFE| NULL
INPUT OXFF| NULL 0XxFF| NULL OxFF| NULL 0xFF| NULL
KEY TAG[o1 | TAG[¢ TAG[¢ TAG[o
[t] Data NULL Data o—-> Data * Data| ¢
\ 7 A 4
http‘://aaa.aaale/ \IEXTTABLE
hiit|tipg: [7T/Talalal. Talalal/{e][/]c
/ hit|tlpl:|/|/]|a]lala}l.]alalal/]d
Tt tel: 171/ 1a]ala].[a]alal/ (STEP S31b)
/

U.S. Patent

Oct. 11, 2016

Sheet 24 of 52

FIG.27

US 9,465,860 B2

QUTPUT
. KEY, TOTAL VALUE
Utp://aaa.aaald/ http://aaa.aaa/d/,3
2 hitp://aaa.aaale/,5
tp://aaa.aaale/ http://aaa.aaale/c/,2
3 p:/laaa.aaalelc/ (STEP S32a)
11 4
http://aaa.aaale/
2 A
h t t
PRESENT
NODE
POINTER POINTER POINTER hd
ARRAY ARRAY ARRAY POINTER ARRAY
ROOT NODE 20 21 22 23
POINTER P h 5 t) t oy
[———[NuLL » NULL » NULL » NULL
X X X
0x00 goe] | X% No] | O wucc| | %% nuce
0x68 o NULL NULL NULL
-« | NULL 0x74 o 0x74 L OXFE| NULL
INPUT 0xFF| NULL O0xFF| NULL 0xFF| NULL OxFF| NULL
KEY TAG| e[|TAG] ¢ TAG| ¢ TAG| o
r_"—_l Data | NULL Data o> 3| Data ’ Data| ¢
\ 7 Y
hilt|tipf:1/]/]alalal.]alalal/]e]/ \IEXTTABLE i’
AR B EEREEBUEUE
/ hit|t|pl:|/]/]alala].|ajala]/]d
/] In]tltlpj:l/|/lalalal.|ajalal/le (STEP S32b)
/

U.S. Patent

Oct. 11, 2016

Sheet 25 of 52

US 9,465,860 B2

ttp://aaa.aaald/
h
tp://aaa.aaale/
3 p://aaa.aaale/c/ (STEP S40a)
I1 4
http://aaa.aaa/d/
2 A
h t t
PRESENT
STACK NODE
] I
POINTER
POINTER POINTER ARRAY POINTER
ARRAY
ROOTNODE ~ "RAY 54 22 ARRAY
POINTER) h y I t ,2 t Oy
[———{NuLL » NULL » NULL > NULL
X X x
000 "NuLL 090 "NuLL 090 oL 0290 "NuLL
0x68 o NULL NULL NULL
<« | NULL 0x74 & 0x74 ® OxFE | NULL
OxFF| NULL 0xFF| NULL 0XxFFj NULL OxFF| NULL
TAG[][| TAG[TAG| ¢ TAG| o—
Data | NULL Data o>/ 3 | Data * Data| ¢
Y \ 4
hit]tlp}:|/]/]alalal.]alalal/|e]/ \IEXTTABLE1
h tipg: |/ alalal.]alajaj/|e]l/]c
/ hitit|pl:1/|/]alalal.lajalal/]d
/| In[titlp]:]7]/]alalal.|alalal/]e (STEP S40b)
/

U.S. Patent Oct. 11, 2016 Sheet 26 of 52 US 9,465,860 B2

FIG.29

ttp://aaa.aaald/

tp://aaa.aaale/

3 , p:/faaa.aaalelc/ (STEP S41a)
114
http://aaa.aaa/d/
2 A
h t t
PRESENT
STACK I:NSDE
POINTER
POINTER POINTER ARRAY POINTER
ROOT NODE ARZ%AY ARRAY 22 ARRAY
POINTER 5 h { ,31 tgv il t 2H3v
[———{nuLL » NULL » NULL » NULL
0300 o | | %% noc] | X% Noie 090 "NuLL
0x68 d NULL NULL NULL
NULL 0x74 ® 0x74 ® O0XFE| NULL
0xFF| NULL 0 xFF | NULL 0xFF| NULL OXFF| NULL
TAG| o—p | TAG[TAG| ¢ TAG| e
Data| NULL Data 0—-> Data * Data ?
¥ L 2
hit|t{p]:l/{/lalala].lalala]/|e]/ \IEXTTABLE1
hit|tipg: [7T7Talalal. Talalal7lel7]c
/ hititipl:|/]/]alalal.lalalal/|d
/ hitlt|pl:|/]/]ajalal.]ajala]/ (STEP S41b)
/

U.S. Patent

Oct. 11, 2016

Sheet 27 of 52

FIG.30

US 9,465,860 B2

ttp://aaa.aaald/
A
tp://aaa.aaale/
3 p.//aaa.aaale/c/ (STEP S42a)
114
http://aaa.aaa/d/
2 A
h t t
PRESENT NODE
I'TI STEK
POINTER POINTER POINTER POINTER
ROOTNODE ~ ARRAY ARRAY ARRAY ARRAY
POINTER h t t
o A) 4
[———nuLL » NULL » NULL » NULL
X X X
0% 00I"NULL 0290 FNuLL 090 NG 0% 90 NuLL
0Oxe8| e -« | NULL «« | NULL <« | NULL
NULL O0x74 d 0x74 d OxFE| NULL
O0xFF | NULL O0xFF| NULL 0xFF| NULL OxFF| NULL
TAG — TAG * TAG * TAG *—
Data [NULL Data| [e—»[3]Data| [y Data| ¢
A 2 A 4
http‘:/Iaaa.aaa/e/ \IEXTTABLE
hit|tlpg: 17T/ Talalal.Talalal7lel7lc
/ hititlpl:|/|/lalalal.]alalal/|[d
/ hitit|pl:1/]|/]alalal.|a]alal/]|e (STEP S42b)
/

U.S. Patent

Oct. 11, 2016

Sheet 28 of 52

FIG.31

US

9,465,860 B2

—OUTPUT
KEY, TOTAL VALUE
http://aaa.aaa/d/,3
ttp://aaa.aaal/d/
A
tp://aaa.aaale/
3 p://aaa.aaale/c/ (STEP S43a)
114
http://aaa.aaa/d/
2 A
h t t
PRESENT NODE
[y | STAeY
ARRAY ARRAY
ROOTNODE ~ ARRAY ARRAY 22 23
POINTER 5 hyy ~ t t)
[—F——{nuLL > NULL » NULL » NULL
X X
0300 o | | %% Nocc] | 9% woic] | %X wuic
Ox68| e NULL NULL NULL
-« | NULL 0x74 ot 0x74 et O0XFE| NULL
O0xFF| NULL 0xFF| NULL OxFF| NULL 0xFF| NULL
TAG —] TAG '3 TAG ® TAG *—
Data | NULL Data o— Data ? Data ?

A 7 A 4
hit]tipl:]/]|/|alala]l.lalalal/]e]/ \IEXTTABLED___E
hit]tlpd:17 ajalal.JalaJa]/]e|/|c
/ hitltlpl:1/1/|alalal.|alalal/|d
/ hit|{tlpl:|/]/]a]ala].]|ala]al/]e (STEP $43b)

/

U.S. Patent Sheet 29 of 52

Oct. 11, 2016 US 9,465,860 B2

aa
A c
3
1
o (STEP S50a)
a
2
C
POINTER
STACK
PRESENT NODE ARRAY
| Y I b (‘
STACK [0x 00 ookt
POINTER - | NULL
ARRAY NULL
POINTER 2] ~ [NULL POINTER
ROOT NODE 20 \ 0% FF| NULL ARRAY
| POE—>INTER SO X NULL o ¢ 233
5 | Data L .
x »
000 "NuLL 0% 90N 000 |-NULL
0x61 ® 0x862 ® NULL
. | NULL ox63| e -+ [[NULL
INPUT OxFF[NULL| OxFF[NULL 0FE | NULL
KEY — 1AG[o TAG[¢ 0::(’; NULL
[] —
Data| NULL Data 1> 3
Data ?
‘Ir Y Y ¥ TEXT TABLE
lalala] lalc[b]| |albfe] Jalef [|| |14
(STEP S50b)

U.S. Patent

Oct. 11, 2016

Sheet 30 of 52

FIG.33

US 9,465,860 B2

aa
A c
3
1
ac (STEP S51a)
b b i
a
2
STACK c
PRESENT NODE FOINTER ARRAY
| ¢ I b H
STACK [0 x 00 oeLL
POINTER -+ [NULL
ARRAY NULL
S 21 - [NULL POINTER
ROOT NODE 0xFF| NULL ARRAY
POINTER 20 23
P ayy TAG| o ¢)
0%00 " NuLL 0% 00 UL 0% 00 kL
oxet| e oxe2| ® " o
.. |NULL ox63] e = | NU
INPUT OXFFINULL| _ OxFF|NULL 0xFE | NULL
KEY TAG[[| TAG[OxFFI NULL
? Data| NULL Data o— ;:g -;
y v v TEXT TABLE i
2
lalalal [alc]b| Jalble] Tale] [[] }~14 2]

(STEP S51b)

U.S. Patent Oct. 11, 2016 Sheet 31 of 52 US 9,465,860 B2

aa
A C
3
1
b ac (STEP S52a)
b y y
a
2
¢ POINTER PRESENT
STACK AR2R’2AY NODE
b 2 | ® I
—— UL STACK
=" NULL
| NULL
POINTER POINTER | I'NOLL| POINTER
ARRAY ARRAY ARRAY

ROOT NODE oy 21 0x FF[NULL A

POINTER 2 a) el C\

[———{nuL > NULL Data ; ©) v
O>_<'90 NULL 0.>f_00 NULL 0x00 NULL
0x61 . 0x62 . Nut::

[INULL 0x63| e o [NU
INPUT OXFF| NULL 0% EF [NULL 0xFE | NULL
% TAG[e[| TAG[¢ 0::2 NULL
® —~—a
Data| NULL Data > 3
Data ¢
l) 4 @ ¥ i
TEXT TABLE 2
lala]a] [alc|b| [alble] lafe]l | | | K14 2]
(STEP S52b)

U.S. Patent Oct. 11, 2016 Sheet 32 of 52 US 9,465,860 B2

aa
A c
3
1
ac (STEP S53a)
b b 7'y
a
2
c
b
22
b ¢
0 00 | NULL PRESENT
S NULL NODE
[NULL e 1
POINTER P'S'{NRTAE(R ... NULL| POINTER
ARRAY ARRAY
ROOT NODE 20 21 0x FF [NULL 53
POINTER 3 a) N 2
E—’ NULL | NULL Data
x ’ »|
000 "NuLL 0% %0 NuLL 0% 00 FRLL
0x61| o oxe2| * Eﬂtt
e 0xos| < 0xFE [NULL
OXxFF| NULL 0% FF| NULL
MEUTREY tag [e—[] TAG[y 0_’;:2 NULL
L J —
I::] Data| NULL Data > 3
U Data *
l \ 2 ¥ ¥ i
TEXT TABLE 2
lalala] [afc[bf [alblc] [alc] | | | K14 2]
(STEP S53b)

U.S. Patent Oct. 11, 2016 Sheet 33 of 52 US 9,465,860 B2

aa
A c
3
p
] a
! baca| (STEP S60a)
b b 'y
b a
2
c POINTER
ARRAY
23
b/
» NULL
PRESENT NODE B rm
[y 1] N
-~ [NuLL
0xFF [NULL
POINTER| TAG[o
POINTER POINTER
ARRAY ARRAY ARRAY [nata [T ¢ | POINTER
ROOT NODE ' 5 R 22 OINTES
POINTER by 3 a il c zq
E NULL » NULL Oxoo, NULL ©
0x00Nut | | ©% %9 NuLL X 00 M oL oo L
0Ox62| e Ox61| e oxe2| ® -+ | NULL
OXFF[NULL| OXFF| NULL 0xFF | NULL 0xFE| NULL
TAG 1]TAG[¢ TAG|[¢ 0::; NULL
Data| NULL Data | ef»{1] Data > 3 —*
. Data ?
e eEOEnUsE: 5
blalalal |blajc|b] |bla] Iblalblc \IEXTTABLE
blajc|a
h
L e | (STEP S60b)

INPUT KEY

U.S. Patent Oct. 11, 2016 Sheet 34 of 52 US 9,465,860 B2
aa
; c
3
]
a
1 baca| (STEP S61a)
b b i
b a
2
c POINTER
ARRAY
23
b/
» NULL
PRESENT NODE [000 ==
- [NULL
POINTER| |0xFF[NULL
POINTER POINTER ARRAY TAG| ¢
ARRAY ARRAY Data| | y| POINTER
ROOT NODE " 29 21 \ ARRAY
POINTER
=T e ¢
NULL PINULL] > NULL ©
0x00Nuc | | 9%99 Nocc 20 [NULL 0% 00 FLL
0x62 ® 0x61 . 0x62 * NULL
. | NULL .. [NULL] oxe3[e - | NULL
OXFF[NULL| OXFF[NULL| OXFF|NULL 0xFE| NULL
TAG| e—p[1]TAG y TAG[¢ O’T‘:c': NULL
Data | NULL Datal o> 1 | Data {3 —*
oata [T 3
| | — i i
blalaja] |bja]c]b| |b]ja] |b]a]b|c -_IEXTTABLE
blajcjia
A
] (STEP S61b)
INPUT KEY

U.S. Patent Oct. 11, 2016 Sheet 35 of 52 US 9,465,860 B2

FI1G.38

aa
A c
3
]
a
1 baca (STEP S62a)
b b 7'y
b a
2
N POINTER
ARRAY
23
b/
0% 00 |- NULL PRESEN
NULL T NODE
NULL ¢]
NULL
0xFF [NULL
PR PomteR PoNTER | Rt
ata
o 7 ; ? A
24
] s - ki
o P A 4
NULL » NULL pyop.4 ITENE
090 "NuLL 000" NuLL aed YT 0% 00 |uLL
oxg2| e oxel| e oxea| ® had YT
S T . | 'NULL oxg3| e = | NULL
OxFF| NULL | OXFF| NULL 0xFF[NULL OxFE | NULL
TAG|__e—b[1] TAG] ¢ TAG[¢ 0XFF] NULL
TAG | —e
Data| NULL Data — Data o 3
o] K =
v 3 ¥ i
blalala blalc|b bla blalb]|c \-{EXTTABLE
blalc|a
A

|) I (STEP S62b)

INPUT KEY

U.S. Patent Oct. 11, 2016 Sheet 36 of 52 US 9,465,860 B2

FI1G.39

aa
A c
3
1
a
! baca (STEP S63a)
b b 7
b a
2
¢ POINTER
ARRAY
23
b
0><00> MULL PRESEN
NULL T NODE
NULL :I"
NULL
0xFF| NULL
POINTER POINTER POINTER ;AtG * COINTER
ARRAY ARRAY ARRAY ata
ReoNTER. 2P 21 22 1 ARRAY
]] —— [X
NULL > NULL 0x00= NULL clv
0790 'NuLL 0 00 NULL S NULL 0% 00 |
0x62 g 0x61 . 0x62 P NULL
.+ | NULL e | NULL ox63| e . | NULL
0xFF] NULL 0xFF| NULL 0xFF | NULL 0xFE | NULL
TAG .—>[I| TAG| ¢ TAG| ¢ OXF; NULL
TA —e
Data| NULL Data ._.>.1 Data -
- - _’E Data ®
v ¥ v ¥
TEXT TABLE Et_|
alala blajc|b bla blalblc|] .14
cla
A
|) I (STEP S63b)
INPUT KEY

U.S. Patent Oct. 11, 2016 Sheet 37 of 52 US 9,465,860 B2

FIG.40

aa
A c
3
4
a
! b baca (STEP S64)
A
b a
2
¢ POINTER
ARRAY
23
b_¢
NULL E:l"
NULL
O0xFF| NULL
ARRAY ARRA ata
RPONTER. 2 21 22 ! ARRAY
4
ol ——fas i [X
NULL > NULL Oxm: NULL “1 Y
%00 " oL 0% 00 NuLL 00 MUt pyope4 ILTUEE
0x62 ® 0x61 ® 0x62 * NULL
| NULL . [NuULL ox63| e | NULL
0xFF| NULL 0xFF| NULL 0xFF[NULL O0xFE| NULL
TAG[e—[1] TAG[¢ TAG| o OxFF| NULL
TAG [—e
Data | NULL Data o—->-1 Data > 3
. Data ?
v ¥y 3 ¥ i
blajala| |bfa]c|b] |bla] |b]a]|b]c \IEXTTABLE
bfalc|a
A
l [] |
INPUT KEY

U.S. Patent Oct. 11, 2016 Sheet 38 of 52 US 9,465,860 B2

eige

2

FIG.41
ROOT NODE

violet

ack

sque

eige

A
b
2

ROOT NODE

U.S. Patent Oct. 11, 2016 Sheet 39 of 52 US 9,465,860 B2

FIG.42

(START ’
| GENERATE ROOT NODE I\-‘S101

y

A

DETERMINE WHETHER NEXT
INPUT DATA EXISTS

S$102

DOES NEXT
INPUT DATA EXIST?

58104

A 4

NO READ OUT INPUT DATA

§S105

I DATA ADDITION PROCESS | I

END

U.S. Patent Oct. 11, 2016

Sheet 40 of 52

FIG.43

DATA ADDITION
PROCESS

.

SET ROOT NODE AS PRESENT S150
NODE
S,

<

Y

$152

IS IT NULL?

DETERMINE WHETHER INPUT KEY
IS NULL S151

NO

YES

N

”i

¥ 53153

REFER TO CHILD NODE BY USING
KEY OF INITIAL CHARACTER OF
INPUT KEY AND DETERMINE

WHETHER CHILD NODE EXISTS

0

1) (5156

REFER TO INFORMATION OF NODE

‘], ¢S157

DETERMINE WHETHER PRIORITY
OF TAG KEY IS SAME AS THAT OF
INPUT KEY

ADD INPUT VALUE
TO PRESENT NODE

YES ¢S155

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
INPUT KEY BY ONE CHARACTER,
AND MOVE TO CHILD NODE BY
USING READ CHARACTER AS KEY

US 9,465,860 B2

(RETURN ’

DETERMINE WHETHER PRIORITY
OF TAG KEY IS LARGER THAN
THAT OF INPUT KEY

IS IT LARGER?

TYES

SS162

DETERMINE WHETHER ELDER
NODE EXISTS OR WHETHER
PARENT NODE IS ROOT NODE

$§163

S160

DOES IT SATISFY
CONDITION?

YES

RETURN POINTER OF INPUT KEY
BY ONE CHARACTER AND MOVE
TO PARENT NODE

U.S. Patent Oct. 11, 2016 Sheet 41 of 52 US 9,465,860 B2

FIG.44

©

»i
(<
A

A

REFER TO CHILD NODE BY USING
KEY OF INITIAL CHARACTER OF S165
INPUT KEY AND DETERMINE

WHETHER CHILD NODE EXISTS

| GENERATE NEW NODE I
§S170 15 58167

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
INPUT KEY BY ONE CHARACTER,
AND MOVE FROM PRESENT NODE
TO NEW NODE BY USING READ
CHARACTER AS KEY

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
INPUT KEY BY ONE CHARACTER,
AND MOVE TO CHILD NODE BY
USING READ CHARACTER AS KEY

. 58168

A 4

EXCHANGE TAG KEY AND VALUE OF
PRESENT NODE FOR INPUT KEY
AND INPUT VALUE

ADD INPUT KEY TO NEW NODE AS
TAG KEY

ADD INPUT VALUE TO NEW NODE I

(RETURN ’

U.S. Patent Oct. 11, 2016 Sheet 42 of 52 US 9,465,860 B2

FIG.45

DATA ADDITION
PROCESS
¥

SET ROOT NODE AS PRESENT NODE I“*—*S180

v

YES
IS IT NULL?

T N0 (S188

REFER TO CHILD NODE BY USING KEY
OF INITIAL CHARACTER OF INPUT KEY
AND DETERMINE WHETHER CHILD
NODE EXISTS

YES
DOES IT EXIST?

. e
1 185
! gS 90 SS 8

y \ 4
DETERMINE WHETHER STACK IS DETERMINE WHETHER CHILD NODE 1S
EMPTY ELDEST NODE

YES IS IT EMPTY?
TNO 53192 NO gS187
SET MIDDLE DATA OF STACK AS SET STACK TO NULL I
PRESENT NODE AND SHIFT POINTER [‘eosss——
OF INPUT KEY BY WHICH POINTER IS <
MOVED 1 58188
y
v READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
c INPUT KEY BY ONE CHARACTER, AND
MOVE TO CHILD NODE BY USING READ
CHARACTER AS KEY
gS189

ADD MOVED NODE TO STACK I

U.S. Patent Oct. 11, 2016 Sheet 43 of 52

FIG.46

§S193

DETERMINE WHETHER PRIORITY OF
TAG KEY AND PRIORITY OF INPUT
KEY ARE SAME

5194

ARE THEY SAME? YES

NO $S196

A

A

US 9,465,860 B2

$S195

DETERMINE WHETHER PRIORITY OF ADD INPUT VALUE TO PRESENT
TAG KEY IS LARGER THAN THAT OF NODE
INPUT KEY

A

A

NO

A

y

(RETURN ’

§S198

I DELETE SECOND HALF OF STACK I DELETE FIRST HALF OF STACK I

U.S. Patent Oct. 11, 2016 Sheet 44 of 52 US 9,465,860 B2

FIG.47

YES

©
¥ YSZOO

REFER TO CHILD NODE BY USING
KEY OF INITIAL CHARACTER OF
INPUT KEY AND DETERMINE

WHETHER CHILD NODE EXISTS

DOES IT EXIST?

v g3202

NO 58204
A

GENERATE NEW NODE I
A

58205

Y

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
REMAINING INPUT KEY BY ONE
CHARACTER, AND MOVE TO CHILD
NODE BY USING READ CHARACTER
AS KEY

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
REMAINING INPUT KEY BY ONE
CHARACTER, AND MOVE FROM
PRESENT NODE TO NEW NODE BY
USING READ CHARACTER AS KEY

1 (5203 (5206
EXCHANGE TAG KEY AND VALUE OF
PRESENT NODE FOR INPUT KEY ADD INPUT KEXGTQE"\‘(EW NODE AS
AND INPUT VALUE

.

j] (5207

ADD INPUT VALUE TO NEW NODE I

"V

v

(RETURN ’

U.S. Patent Oct. 11, 2016 Sheet 45 of 52

FI1G.48
(RETRIEVAL)
PROCESS
SET ROOT NS&%EAS PRESENT I. $300

US 9,465,860 B2

+‘
DETERMINE WHETHER INPUT KEY
IS NULL

8301

¢ gSSOS

NO

(%
P

YES REFER TO CHILD NODE BY USING
KEY OF INITIAL CHARACTER OF
INPUT KEY AND DETERMINE
WHETHER CHILD NODE EXISTS

DOES IT EXIST?

NO DOES IT SATISFY
CONDITION?

v <5306

REFER TO INFORMATION ON
NODE AND DETERMINE WHETHER
PRIORITY OF TAG KEY AND
PRIORITY OF INPUT KEY ARE
SAME

ARE THEY SAME? JES

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
INPUT KEY BY ONE CHARACTER,
AND MQVE TO CHILD NODE BY
USING READ CHARACTER AS KEY

DETERMINE WHETHER PRIORITY
OF TAG KEY IS LARGER THAN
THAT OF INPUT KEY

YES gS311

DETERMINE WHETHER ELDER
NODE EXISTS OR WHETHER
PARENT NODE IS ROOT NODE

8312

(S313
RETURN POINTER OF YES
INPUT KEY BY ONE <
CHARACTER AND MOVE
TO PARENT NODE

I

v §S314

v g8308

| OUTPUT EFFECT THAT IDENTICAL I | I
DATA DOES NOT EXIST OUTPUT DATA OF PRESENT NODE

o

(END '

U.S. Patent Oct. 11, 2016 Sheet 46 of 52 US 9,465,860 B2

FIG.49

(START ’
SET ROOT NODE AS PRESENT S350
NODE

Y

DETERMINE WHETHER INPUT KEY
IS NULL

IS IT NULL?

DETERMINE WHETHER CHILD
NODE EXISTS BY USING INITIAL
CHARACTER OF INPUT KEY

DOES IT EXIST?

YES Sssss < A)
DETERMINE WHETHER CHILD

NODE IS ELDEST NODE

IS IT ELDEST NODE? YES

NO (8357

SET STACK TO NULL I

<
y

A

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
INPUT KEY BY ONE CHARACTER,
AND MOVE TO CHILD NODE BY
USING READ CHARACTER AS KEY

S358

ADD MOVED NODE TO STACK

S359

U.S. Patent Oct. 11, 2016 Sheet 47 of 52 US 9,465,860 B2

FIG.50

O

P

DETERMINE WHETHER STACK IS $360
EMPTY
IS IT EMPTY? YES
¥ NO §3363 v gS362
SET MIDDLE NODE OF STACK AS OUTPUT EFFECT THAT THERE IS
PRESENT NODE AND SHIFT NOT MATCHING DATA

POINTER OF INPUT KEY BY WHICH
POINTER IS MOVED

DETERMINE WHETHER PRIORITY
OF TAG KEY AND PRIORITY OF
INPUT KEY ARE SAME

8365

YES
ARE THEY SAME?
gS366
NO
OUTPUT DATA OF PRESENT
NODE

DETERMINE WHETHER PRIORITY
OF TAG KEY IS LARGER THAN S367

THAT OF INPUT KEY
——

S364

< 8369

DELETE FIRST HALF OF
STACK
SSS?O

I DELETE SECOND HALF OF STACK I

END

U.S. Patent Oct. 11, 2016 Sheet 48 of 52 US 9,465,860 B2

FIG.51

(START ’
SET ROOT NI(\I)ODE AS PRESENTI_ S400

)

\ 4
DETERMINE WHETHER CHILD
NODE EXISTS S401

DETERMINE WHETHER
YOUNGER NODE EXISTS I | MOVE TO ELDEST NODE I

S406
YES

DOES IT EXIST? 5407

' g

MOVE TO PARENT NODE S408
v ¢S404

DETERMINE WHETHER PROCESS AND OUTPUT
PRESENT NODE IS ROOT S409 VARIOUS DATA OF PRESENT
NODE

U.S. Patent Oct. 11, 2016 Sheet 49 of 52 US 9,465,860 B2

FI1G.52

START
SET ROOT NODE AS PRESENT 5450
NODE
v
DETERMINE WHETHER INPUT KEY
IS NULL $451
$452
NO
w] (S48
REFER TO CHILD NODE BY USING
YES KEY OF INITIAL CHARACTER OF

INPUT KEY AND DETERMINE
WHETHER CHILD NODE EXISTS

VES 5455

READ FIRST ONE CHARACTER OF
INPUT KEY, ADVANCE POINTER OF
INPUT KEY BY ONE CHARACTER,
AND MOVE TO CHILD NODE BY
USING READ CHARACTER AS KEY

y (5456

REFER TO INFORMATION ON
NODE AND DETERMINE WHETHER
PRIORITY OF TAG KEY AND
PRIORITY OF INPUT KEY ARE

DETERMINE WHETHER PRIORITY
OF TAG KEY IS LARGER THAN
THAT OF INPUT KEY

DETERMINE WHETHER ELDER
NODE EXISTS OR WHETHER
PARENT NODE IS ROOT NODE

DOES IT SATISFY

58462 CONDITION?
RETURN POINTER OF YES
INPUT KEY BY ONE <
CHARACTER AND MOVE

TO PARENT NODE

v §S463
LOUTPUT EFFECT THAT DELETION

DATA DOES NOT EXIST

v

END

U.S. Patent Oct. 11, 2016 Sheet 50 of 52 US 9,465,860 B2

DETERMINE WHETHER DATA S464
TO BE DELETED EXISTS

YES (S467 v ¢S466
OUTPUT EFFECT THAT
DETERMINE WHETHER
OTHER DATA EXISTS I DELETION EQITéAI_ DOES NOT
R

S468
YES

Y

DOES IT EXIST?

P»
A

| NO s469

DETERMINE WHETHER CHILD
NODE EXISTS

v §S471

o T
YES DELETE EDGE FOR PRESENT
NODE OF PARENT NODE AND
DELETE PRESENT NODE

L

SET DATA OF PRESENT NODE S472 g
TO DATA OF ELDEST NODE

L2

MOVE TO ELDEST NODE I\'S473 v
END

US 9,465,860 B2

Sheet 51 of 52

Oct. 11, 2016

U.S. Patent

Nva504d $S3004d
HOY¥V3as | HOYV3S
TR EENTRE]
og} S qzL3
Nva509d $53004d
NOILVH4IN3O |- NOILVHYINID
3341 JdL 3391 3L
agl 3 esd Y¥3aav3y ¥ITIONLNOD
ndd WNIa3aW NOILVDINNWNOD
V.1vd SNOMMVA 73 ™ ™5
ool s
8 aan
gL>
’
61
sng
oy V1va SNOINVA HOLINOW 3DIA3A LNdNI
pLd g ZLo b3
NYY
gL (3DIA3A VAIINLTY) YILNAWOD
oL

U.S. Patent Oct. 11, 2016 Sheet 52 of 52 US 9,465,860 B2

DATA -

[(KEY, VALUE)

black, 1

green, 3

grey, 5

black, 3

grey, 2

b | u e 1138 greenyellow, 1
4
ROOT g r e e n y e I | (o} w
NODE R
3 1
y
5|2
_ DATA -
(KEY, VALUE)

black, 1
green, 3
blue, 4
grey, 5
black, 3
greenyellow, 1

US 9,465,860 B2

1

STORAGE MEDIUM, TRIE TREE
GENERATION METHOD, AND TRIE TREE
GENERATION DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of International Appli-
cation No. PCT/JP2009/055521, filed on Mar. 19, 2009, the
entire contents of which are incorporated herein by refer-
ence.

FIELD

The embodiment discussed herein is directed to a trie tree
generation device and a trie tree generation method that are
used for performing various types of processes by using a
trie tree.

BACKGROUND

A document retrieval system uses a trie tree in order to
retrieve a desired document, value, or the like from a key at
high speed. The technique has been known as disclosed in,
for example, Japanese Laid-open Patent Publication No.
59-47669 and Japanese Laid-open Patent Publication No.
11-7451. FIG. 55 is a diagram illustrating an example of a
conventional trie tree. The trie tree constructs a tree structure
by assigning one node per one character with respect to
nodes excluding a root node. The trie tree illustrated in FIG.
55 indicates that values “1, 3, 4, 5, 3, 2, and 17 are
respectively assigned to keys “black, green, blue, grey,
black, grey, and greenyellow”.

When a conventional retrieval device performs a retrieval
process on a trie tree, the retrieval device takes out charac-
ters from an input key one by one and traces the nodes of the
same key on the trie tree. For example, when the input key
“blue” is designated, the retrieval device traces the nodes of
the trie tree in order of'b, 1, u, and e, and detects “4” assigned
to “blue”.

Meanwhile, the trie tree illustrated in FIG. 55 has a
problem in that the number of nodes increases and thus an
amount of used memory increases when the trie tree has a
long key. Moreover, there is a problem in that the number of
nodes to be compared during a retrieval process increases
and thus a retrieval process completion time increases when
a key is long.

Therefore, in order to solve the problems on the trie tree,
a trie tree called a Patricia tree is devised. The technique has
been known as disclosed in, for example, “Radix tree”
[online] [Retrieval on Mar. 17, 2009], Internet <ja.wikipe-
dia.org/wiki/%E5%9F%BME6%95%B0%E6%9C%A8 (To
avoid URL, “http://” has been omitted)>. FIG. 56 is a
diagram illustrating an example of a Patricia tree. The
Patricia tree expresses an edge part, through which a node is
transited to another node, by using a character string instead
of'a character, in order to reduce an amount of used memory.
In this case, the Patricia tree illustrated in FIG. 56 indicates
that values “1, 3, 4, 5, 3, 2, and 1™ are assigned to keys
“black, green, blue, grey, black, grey, and greenyellow”.

When the conventional retrieval device performs a
retrieval process on a trie tree, the retrieval device sequen-
tially compares an input key with the character strings of
edge parts to trace the Patricia tree. For example, when the
input key “blue” is designated, the retrieval device traces the
edge parts of the Patricia tree in order of bl and ue, and
detects “4” assigned to “blue”.

10

15

20

25

30

35

40

45

50

55

60

65

2

However, although the Patricia tree described above can
solve a problem on an amount of used memory as compared
to a normal trie tree, there is a problem in that an amount of
used memory increases when a key has many characters
because a node is created for each predetermined character
string.

SUMMARY

According to an aspect of an embodiment of the inven-
tion, a non-transitory computer-readable storage medium
stores therein a program causing a computer to execute a
process storing a trie tree in which nodes corresponding to
predetermined characters are connected in accordance with
a tree structure, reading out, when a new character string is
registered in the trie tree, characters of the new character
string in sequence from a head thereof to trace nodes
included in the trie tree in accordance with characters
corresponding to the nodes; and adding a new node below
any of the traced nodes or a leaf node arriving in accordance
with the new character string to register the new character
string in the node in such a manner that a single character
string is registered for a single node.

The object and advantages of the embodiment will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the embodi-
ment, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram explaining a term of a node included
in a tree structure;

FIG. 2 is a schematic diagram (1) explaining a retrieval
device according to the present embodiment;

FIG. 3 is a schematic diagram (2) explaining the retrieval
device according to the present embodiment;

FIG. 4 is a diagram explaining a comparison target node;

FIG. 5 is a diagram explaining a process for registering a
new key in a trie tree;

FIG. 6 is a diagram illustrating an example of a trie tree
in which a tag key not having a trie-part key is saved;

FIG. 7 is a diagram (1) illustrating an amount of used
memory according to a data structure of a conventional
Patricia tree and an amount of used memory according to a
trie tree of the present invention;

FIG. 8 is a diagram illustrating a trie tree when a pointer
array is deleted from a leaf node;

FIG. 9 is a diagram illustrating an amount of used
memory according to the data structure of the conventional
Patricia tree and an amount of used memory according to the
trie tree of the present embodiment when an amount of
memory is reduced by using the technique illustrated in
FIGS. 6 and 8;

FIG. 10 is a diagram illustrating the configuration of the
retrieval device according to the present embodiment;

FIG. 11 is a diagram illustrating an example of a data
structure of a registration data management table according
to the present embodiment;

FIG. 12 is a diagram illustrating an example of a data
structure of a trie tree;

FIG. 13A is a diagram illustrating an example of a data
structure when the trie tree illustrated in FIG. 12 is expressed
with real data;

US 9,465,860 B2

3

FIG. 13B is a diagram illustrating an example of the other
data structure of the trie tree;

FIG. 14 is a schematic diagram explaining a trie tree
generation process that is performed by a trie tree generating
unit;

FIG. 15 is a diagram (1) explaining the trie tree generation
process;

FIG. 16 is a diagram (2) explaining the trie tree generation
process;

FIG. 17 is a diagram (3) explaining the trie tree generation
process;

FIG. 18 is a diagram (4) explaining the trie tree generation
process;

FIG. 19 is a diagram (5) explaining the trie tree generation
process;

FIG. 20 is a diagram (6) explaining the trie tree generation
process;

FIG. 21 is a diagram (7) explaining the trie tree generation
process;

FIG. 22 is a diagram (8) explaining the trie tree generation
process;

FIG. 23 is a diagram (9) explaining the trie tree generation
process;

FIG. 24 is a diagram (10) explaining the trie tree genera-
tion process;

FIG. 25 is a diagram (1) explaining a summary value
extraction process;

FIG. 26 is a diagram (2) explaining a summary value
extraction process;

FIG. 27 is a diagram (3) explaining a summary value
extraction process;

FIG. 28 is a diagram (1) explaining a retrieval process
when a binary search is used;

FIG. 29 is a diagram (2) explaining a retrieval process
when a binary search is used;

FIG. 30 is a diagram (3) explaining a retrieval process
when a binary search is used;

FIG. 31 is a diagram (4) explaining a retrieval process
when a binary search is used;

FIG. 32 is a diagram (5) explaining a retrieval process
when a binary search is used;

FIG. 33 is a diagram (6) explaining a retrieval process
when a binary search is used;

FIG. 34 is a diagram (7) explaining a retrieval process
when a binary search is used;

FIG. 35 is a diagram (8) explaining a retrieval process
when a binary search is used;

FIG. 36 is a diagram (1) explaining a retrieval process
when the binary search is not used;

FIG. 37 is a diagram (2) explaining a retrieval process
when the binary search is not used;

FIG. 38 is a diagram (3) explaining a retrieval process
when the binary search is not used;

FIG. 39 is a diagram (4) explaining a retrieval process
when the binary search is not used;

FIG. 40 is a diagram (5) explaining a retrieval process
when the binary search is not used;

FIG. 41 is a diagram explaining a deletion process;

FIG. 42 is a flowchart illustrating processing procedures
of a trie tree generation process;

FIG. 43 is a flowchart (1) illustrating processing proce-
dures of a data addition process in which the binary search
is not used;

FIG. 44 is a flowchart (2) illustrating processing proce-
dures of a data addition process in which the binary search
is not used;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 45 is a flowchart (1) illustrating processing proce-
dures of a data addition process in which the binary search
is used;

FIG. 46 is a flowchart (2) illustrating processing proce-
dures of a data addition process in which the binary search
is used;

FIG. 47 is a flowchart (3) illustrating processing proce-
dures of a data addition process in which the binary search
is used;

FIG. 48 is a flowchart illustrating processing procedures
of a retrieval process in which the binary search is not used;

FIG. 49 is a flowchart (1) illustrating processing proce-
dures of a retrieval process in which the binary search is
used;

FIG. 50 is a flowchart (2) illustrating processing proce-
dures of a retrieval process in which the binary search is
used;

FIG. 51 is a flowchart illustrating processing procedures
of a summary value extraction process;

FIG. 52 is a flowchart (1) illustrating processing proce-
dures of a deletion process;

FIG. 53 is a flowchart (2) illustrating processing proce-
dures of the deletion process;

FIG. 54 is a diagram illustrating the hardware configura-
tion of a computer corresponding to the retrieval device
illustrated in the embodiment;

FIG. 55 is a diagram illustrating an example of a con-
ventional trie tree; and

FIG. 56 is a diagram illustrating an example of a Patricia
tree.

DESCRIPTION OF EMBODIMENT

Preferred embodiments of the present invention will be
explained with reference to accompanying drawings.

The present invention is not limited to the embodiments
explained below.

Embodiment

First, it will be explained about a term of a node included
in a tree structure before a retrieval device according to the
present embodiment is explained. FIG. 1 is a diagram
explaining a term of a node included in a tree structure. As
illustrated in FIG. 1, a node that is located in the highest
layer is defined as a root node among nodes that constitutes
a trie tree. Moreover, a node that is directly located in a layer
above a reference node and is connected to the reference
node is defined as a parent node for the reference node
(simply, parent node). Furthermore, a node that is directly
located in a layer below the reference node and is connected
to the reference node is defined as a child node for the
reference node (simply, child node).

A node that is located in the same layer as that of the
reference node, is connected to the same parent node as that
of the reference node, and is located at the upper side of the
reference node is defined as an elder node for the reference
node (simply, elder node). Moreover, a node that is located
in the same layer as that of the reference node, is connected
to the same parent node as that of the reference node, and is
located at the lower side of the reference node is defined as
a younger node for the reference node (simply, younger
node). Furthermore, nodes from a root node to a parent node
are defined as an ancestral node in a mass. Furthermore,
nodes connected below the reference node are defined as a
descendant node in a mass.

US 9,465,860 B2

5

Next, it will be explained about the brief of the retrieval
device according to the present embodiment. FIGS. 2 and 3
are schematic diagrams explaining the retrieval device
according to the present embodiment. First, as illustrated in
FIG. 2, when a trie tree is generated on the basis of the
designated key, the retrieval device according to the present
embodiment assigns one key to one node. In the following
explanation, a key assigned to a node is expressed as a tag
key. In FIG. 2, tag keys “black, blue, green, grey, and
greenyellow” are respectively assigned to nodes “b, 1, g, 1,
and e”. Moreover, values “1, 37, <4, “3” 5, 2” and “1” are
respectively assigned to the nodes “b, 1, g, r, and e”.

In the trie tree illustrated in FIG. 2, values “1, 3, 4, 5, 3,
2, and 17 are respectively assigned to the tag key “black,
green, blue, grey, black, grey, and greenyellow” in the same
way as in the trie tree illustrated in FIG. 55 or the Patricia
tree illustrated in FIG. 56. However, unlike with the trie tree
and the Patricia tree illustrated in FIGS. 55 and 56, the trie
tree according to the present embodiment does not have a
node that does not have data because one tag key is
associated with one node, and thus memory utilization
efficiency can be raised. Moreover, because the trie tree
according to the present embodiment does not increase the
number of nodes in the trie tree even if a node has many
characters, an amount of used memory can be suppressed.

However, because one tag key is assigned to one node, the
trie tree according to the present embodiment does not
determine whether an input key hits a tag key if it does not
actually refer to the tag key registered in a node. For
example, in the trie tree illustrated in FIG. 2, when nodes are
traced in accordance with the first character “b” of an input
key “blue”, the transition first moves from the root node to
the node “b”. At the transition point to the node “b”, it cannot
be determined whether the input key hits the tag key.
Actually, at the time point at which the input key is com-
pared with the tag key “black™ of the node “b”, it can be
determined that the input key does not hit the tag key.

Then, the node is transited to the node “I”” in accordance
with the second character “1”. Because it can be determined
that the input key is identical with the tag key after the input
key “blue” is compared with the tag key “blue” of the node
“1”, the value “4” added to the node “1” is detected as a
detection result. Therefore, when tag keys are respectively
assigned to nodes at random, an input key is sequentially
compared with the tag keys of nodes that are transited in
accordance with the input key, and thus processing effi-
ciency cannot be improved.

In order to solve such a problem, as illustrated in FIG. 3,
the retrieval device according to the present embodiment
constructs the trie tree in such a manner that tag keys are
arranged in depth first order. In this way, when tag keys are
arranged in depth first order, processing efficiency can be
improved because nodes having tag keys to be compared
with an input key during retrieval of data can be narrowed
down. When the trie tree is constructed in such a manner that
keys are arranged in depth first order, the retrieval device
determines the priority of each key and assigns a key that has
a smaller priority to a node closer to a root node.

When determining a priority, the retrieval device extracts
characters of each key in sequence from the head until a
different character is detected. In this case, in alphabetical
order among the extracted characters, a character closer to
“a” has a smaller priority and a character closer to “z” has
a larger priority. In other words, a priority is “a<b<c<d<
e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z’. It
may be said that character strings having the same priority
are the same character string.

10

15

20

25

30

35

40

45

50

55

60

65

6

For example, when the tag keys “black™ and “blue” are
compared, different characters are extracted at the third
character. Specifically, “a” is extracted from “black™ and “u”
is extracted from “blue”. Then, when “a” and “u” are
compared, “u” has a priority larger than that of “a”. There-
fore, “black” having a small priority is assigned to a node
closer to the root node than “blue”.

Moreover, when “green” and “greenyellow” are com-
pared, different characters are extracted at the sixth charac-
ter. Specifically, because the sixth character does not exist in
“green”, “null” is extracted from “green” and “y” is
extracted from “greenyellow”. In such a case, the retrieval
device determines that the key “greenyellow” from which a
null is not extracted has a priority larger than that of “green”.
Therefore, “green” having a small priority is assigned to a
node closer to the root node than “greenyellow”.

In the present embodiment, when a plurality of child
nodes is directly connected to the same parent node, a key
having a small priority is arranged at an elder node and a key
having a large priority is arranged at a younger node. For
example, when “black” and “green” are compared, different
characters are extracted at the first character. Specifically,
“b” is extracted from “black”™ and “g” is extracted from
“green”. Then, when “b” and “g” are compared, “g” has a
priority larger than that of “b”. Therefore, “black” having a
small priority is arranged in an elder node than “green”. As
illustrated in FIG. 2, when the tag keys are assigned, a
priority size relation between the tag key of a parent node
having child nodes and the tag keys of brother nodes is like
“a key of a parent node<a key of an eldest node<a key of a
second node<a key of a third node< . . . ”. Moreover, a node
located at the lower location has a larger priority. For
example, in FIG. 3, the priority of the key of the node “e”
is larger than those of the nodes “r” and “g”.

As illustrated in FIG. 3, when the tag keys are arranged at
the nodes, the location of an input key to be retrieved can be
narrowed down from a relationship between the priority of
the input key and the priority of the tag key. This means that
it is enough simply to search a tag key that has the same
priority as that of an input key. In other words, among nodes
that are traced in accordance with the characters of an input
key, it is not required to compare the input key with the tag
keys of nodes (descendant node) after a node having a
priority larger than that of the input key and also to compare
the input key with the tag keys of nodes (ancestral node)
before a node having a priority smaller than that of the input
key.

Herein, when the nodes of the trie tree are traced by
reading out the characters of the input key one-by-one from
the head, a node to arrive at finally is defined as an arrival
node. Moreover, among nodes having an elder node from the
root node to the arrival node, a node having a key having the
largest priority is defined as a specific node. In this case,
when a node having an elder node does not exist, the child
node of the root node is defined as a specific node.

When the retrieval device according to the present
embodiment retrieves the tag key identical with an input key,
it is enough that any node among nodes from an arrival node
to a specific node is a retrieval object. When a tag key
identical with an input key does not exist among nodes to be
retrieved, it can be determined that a tag key identical with
the input key does not exist even if the other tag keys are not
referred to.

This reason is that the key priority of the parent node of
a specific node is smaller than the key priority of the elder
node and the key priority of the elder node is smaller than
the priority of the input key (registration target) belonging to

US 9,465,860 B2

7

the key string of the younger node (specific node). Further-
more, this reason is that it is decided that the priority of the
input key is larger than the priority of the tag key of the elder
node side at the time point at which the input key traces the
younger node.

In the following explanation, nodes from an arrival node
to a specific node are referred to as comparison target nodes.
When a key identical with an input key is retrieved, it is only
necessary that the retrieval device executes a comparison
process on the tag keys of the comparison target nodes.

FIG. 4 is a diagram explaining comparison target nodes.
When it finally arrives at node “6” by reading out input keys
one-by-one from the head, it is only necessary that the
retrieval device compares the tag keys of the nodes “5 and
6” included in a comparison target node A with the input key.

Next, it will be explained about the case where the
retrieval device according to the present embodiment reg-
isters a new key in a trie tree. FIG. 5 is a diagram explaining
a process for registering a new key in a trie tree. When a new
key is constructed in a trie tree, it is only necessary that the
retrieval device performs a comparison process for compar-
ing the new key with the tag key of a comparison target node
and registers the new key in the trie tree in accordance with
its priority.

It is specifically explained with reference to FIG. 5. A trie
tree illustrated at the left side of FIG. 5 respectively assigns
keys “beige, bisque, black, and blueviolet” to nodes “b, 1, 1,
and u”. Moreover, the trie tree respectively assigns values
“27, “4”, <1, 37, and “3” to the node “b, i, 1, and u”.

When the retrieval device adds a key “blue” and a value
“4” to the trie tree illustrated at the left side of FIG. 5, an
arrival node becomes “node u” and a specific node becomes
“node 1”. Therefore, comparison target nodes become the
node “1”, the node “u”, and (a node to be connected to below
the node “u”).

When the keys “blueviolet” and “black™ connected to the
registration target node are compared with “blue”, the pri-
ority of the key “blue” is smaller than that of “blueviolet”
and is larger than that of “black”. Therefore, it is only
necessary that “blue” is registered between the node having
“blueviolet” and the node having “black™. In this case, as
illustrated at the right side of FIG. 5, the key “blue” and the
value “4” are assigned to the node “u” and a node “e” is
created below the node “u”. The “blueviolet” and the value
“3” are assigned to the node “e”.

Meanwhile, the retrieval device according to the present
embodiment maintains a tag key that is add to a node as a
tag in the format in which the key of a trie part is deleted,
in order to further reduce an amount of used memory of the
trie tree. FIG. 6 is a diagram illustrating an example of a trie
tree that maintains tag keys in the format in which the key
of a trie part is deleted.

For example, a tag key “ack” is registered in the node “1”.
This has the same meaning as the case where the tag key
“black” is registered in the node “1”. Because the keys of trie
parts from the root node to the node “1” are “b, 17, the sum
of the trie parts and the tag key becomes “black”.

Because the character string of the tag key becomes small
by taking the data structure such as for example FIG. 6, the
size of the tag key to be compared with the input key can be
reduced. Moreover, like FIG. 6, each node may have only a
pointer for a tag key without having the data of the tag key
on the trie tree. Furthermore, all the tag key data are
maintained and a character position at which comparison is
started may be changed.

FIG. 7 is a diagram illustrating an amount of used
memory according to a data structure of a conventional

10

15

20

25

30

35

40

45

50

55

60

65

8

Patricia tree and an amount of used memory according to the
trie tree of the present invention. Both of the Patricia tree and
the trie tree assign “1, 2, 3, 4, and 5” respectively to keys
“aaaaa, aacab, ababc, abacb, and abcab”.

Herein, assuming that a node memory is 1 kilobyte, a tag
key memory is 1 byte, and a value memory is 4 bytes, the
total memory is about 10 kilobytes because the Patricia tree
has 10 nodes, 17 characters of the tag keys, and 5 values. On
the other hand, because the trie tree according to the present
invention has 6 nodes, 16 characters of the tag keys, and 4
values, the total memory is about 6 kilobytes. Therefore, the
trie tree according to the present invention can reduce an
amount of used memory as compared to the conventional
Patricia tree.

The retrieval device according to the present embodiment
may delete a pointer array from a leaf node corresponding to
a terminal node of the trie tree. Herein, a pointer array is an
array of a pointer that indicates a destination node. FIG. 8 is
a diagram illustrating a trie tree when a pointer array is
deleted from a leaf node. In this way, an amount of used
memory of leaf nodes can be reduced by deleting a pointer
array from the leaf node.

FIG. 9 is a diagram illustrating an amount of used
memory according to the data structure of the conventional
Patricia tree and an amount of used memory according to the
trie tree of the present embodiment when an amount of
memory is reduced by using the technique illustrated in
FIGS. 6 and 8.

Herein, assuming that an internal node memory is 1
kilobyte, a leaf node memory is 12 bytes, a memory per one
character of a key is 1 byte, and a value memory is 4 bytes,
the total memory becomes about 5 kilobytes because the
Patricia tree has 5 internal nodes, 5 leaf nodes, 17 characters
of the key, and 5 values. On the other hand, because the trie
tree of the present embodiment has 3 internal memory, 3 leaf
nodes, 19 characters of a key, and 5 values, the total memory
becomes about 3 kilobytes. In this way, even if an amount
of used memory is reduced by using the technique of FIGS.
8 and 9, the trie tree according to the present embodiment
can further reduce an amount of used memory as compared
to the Patricia tree.

Next, it will be explained about the configuration of the
retrieval device according to the present embodiment. FIG.
10 is a diagram illustrating the configuration of the retrieval
device according to the present embodiment. As illustrated
in FIG. 10, a retrieval device 100 includes an input unit 110,
an output unit 120, an input-output control unit 130, a
storage unit 140, and a control unit 150.

Herein, the input unit 110 is a unit that inputs information
such as an input key, and corresponds to a keyboard, a
mouse, a microphone, or the like. The output unit 120 is a
unit that outputs information such as a retrieval result that is
obtained by using the trie tree, and corresponds to a monitor,
a display, a touch panel, or the like. The input-output control
unit 130 is a processing unit that controls the input and
output of data that is performed by the input unit 110, the
output unit 120, the storage unit 140, and the control unit
150.

The storage unit 140 is a unit that stores therein data and
programs used for various types of processes that are
performed by the control unit 150. The storage unit 140
includes a registration data management table 140a and a
trie tree 1405.

Herein, the registration data management table 1404 is a
table that stores a key and a value to be registered in the trie
tree in association with each other. FIG. 11 is a diagram
illustrating an example of the data structure of the registra-

US 9,465,860 B2

9

tion data management table 140a according to the present
embodiment. As illustrated in FIG. 11, the registration data
management table 140a stores a key and a value in asso-
ciation with each other.

The trie tree 1405 is a tree that is generated on the basis
of the registration data management table 140q. FIG. 12 is
a diagram illustrating an example of the data structure of a
trie tree. As an example, a trie tree corresponding to the
registration data management table 140a of FIG. 11 is
illustrated in FIG. 12. As illustrated in FIG. 12, nodes “b”
and “g” are connected to the root node and a node “1” is
connected to the node “b”.

Moreover, a tag key “eige” and a value “2” are connected
to the node “b”. A tag key “ack” and values “1, 3” are
connected to the node “I”. A tag key “reen” and a value “4”
are connected to the node “g”.

The real data format of the trie tree illustrated in FIG. 12
is a data structure illustrated in FIG. 13A. FIG. 13A is a
diagram illustrating an example of a data structure when the
trie tree illustrated in FIG. 12 is expressed with real data. As
illustrated in FIG. 13 A, the trie tree 1405 has pointer arrays
10 to 13 and a text table 14.

Herein, the pointer array 10 connected to a root node
pointer corresponds to the root node of FIG. 12, the pointer
array 11 corresponds to the node “b” of FIG. 12, and the
pointer array 12 corresponds to the node “1” of FIG. 12.
Moreover, the pointer array 13 corresponds to the node “g”
of FIG. 12.

Each of the pointer arrays 10 to 13 has “TAG” and “Data”
areas. The “TAG” area is associated with the character of the
text table 14 to express a tag key connected to its node. For
example, because the pointer array 11 is connected to “e” of
the text table 14, a character string “eige” from “e” to the
front of the next null is designated as a tag key. Moreover,
the “Data” is associated with a value to express a value
connected to its node. For example, the pointer array 11 is
connected to the value “2”.

Each the pointer array has key numbers (pointers) “0x00
to OxFF” for determining pointer arrays that are connected
below the pointer array. For example, a key number “0x62”
is connected to the pointer array 11 and a key number
“0x67” are connected to the pointer array 13.

The data structure of real data of the trie tree 1405
illustrated in FIG. 13 A indicates that one node has eight bits
corresponding to one character of an ASCII code. However,
the present invention is not limited to this. For example, one
node may have four bits by dividing an ASCII code of one
character by two to be a four-bit unit. In that case, the
number of the key numbers of the pointer array is 256 of
“0x00 to 0xFF” in the case of eight bits. On the other hand,
the number of the key numbers can be reduced to 16 of “0x0
to OxF” in the case of four bits, and thus an amount of used
memory can be reduced. FIG. 13B is a diagram illustrating
an example of the other data structure of the trie tree 1405.

For example, in the case of “beige”, the pointer array is
connected to the pointer array 11 at the first key number
“0x62” in the case of eight bits per one node. In the case of
four bits per one node, the pointer array is connected to a
pointer array XX of FIG. 13B at “0x6” of the first half part
of “0x62” as the first key number. Moreover, when “black”
is next added in addition to “beige”, the pointer array is
connected to the pointer array 12 at the second key number
“0x6¢” in the case of eight bits per one node. However, in
the case of four bits per one node, the pointer array is
connected to a pointer array YY of FIG. 13B at “0x2” of the
latter half part of “0x62” as the second key number. In this
case, the pointer array Y'Y is “0x62”, that is a node indicative

10

15

20

25

30

35

40

45

50

55

60

65

10

of “b”, which is obtained by adding the key number “0x6”
for connection to the pointer array XX and the key number
“0x2” for connection to the pointer array YY. Furthermore,
when “blue” is next added, the pointer array is connected to
the next pointer array at the key number “0x75” of the third
character “u” in the case of eight bits per one node. How-
ever, in the case of four bits per one node, the pointer array
is connected to the next pointer array at “0x6” of the first half
part of the key number “0x6¢” of the second character “1”
as the third key number.

In the case of a multi-byte character such as a Japanese
code, several bytes are treated as one character. At this time,
it is not assumed that one node has 16 bits. It is assumed that
one node has eight bits or four bits by dividing one character
by two or more.

The present computer cannot directly designate a bit
position and take out a bit stream. However, the computer
can specifies a byte position including a desired bit stream
from a bit position, take out a single byte, and take out a
desired bit stream by using a bit processing operation.
Similarly, the computer can take out a character string that
indicates a tag key.

Alternatively, because all key number areas of a pointer
array corresponding to a leaf node are null, a part (key
number area) of the pointer array can be omitted for sim-
plification. In this case, each the pointer array has a flag that
indicates whether its own pointer array is a leaf node.

Returning to the explanation of FIG. 10, the control unit
150 has an internal memory that stores programs and control
data that define various types of processing procedures, and
executes various processes by using them. As illustrated in
FIG. 10, the control unit 150 includes a trie tree generating
unit 150a and a trie tree searching unit 1504.

The trie tree generating unit 150a is a processing unit that
generates the trie tree 1405 on the basis of the keys regis-
tered in the registration data management table 140a. As
explained in FIGS. 2 and 3, the trie tree generating unit 150a
constructs the trie tree 1405 by assigning one key to one
node. Moreover, when a tag key is registered in a node, the
trie tree generating unit 150a generates the trie tree in such
a manner that tag keys are arranged in depth first order.

FIG. 14 is a schematic diagram explaining a process for
generating the trie tree 14056 that is performed by the trie tree
generating unit 150a. Herein, for convenience of explana-
tion, it will be explained about the case where the input key
“blue” and the value “4” are registered in the trie tree
illustrated at the left side of FIG. 14. In the trie tree
illustrated at the left side of FIG. 14, tag keys are assigned
to all nodes in the state where the keys of trie parts are
deleted, similarly to the trie tree described in FIG. 6.

First, the trie tree generating unit 150a takes out charac-
ters from an input key one-by-one and traces nodes on the
trie tree. In the middle of the trace, the trie tree generating
unit 150a does not compare the input key and the tag keys.
When the input key is “blue”, the trie tree generating unit
150a takes out characters from the head of “blue” one-by-
one. When the trie tree generating unit traces nodes on the
trie tree, the nodes are transited in order of the root node, the
nodes “b”, “1”, and “u”.

Next, when a node to be traced does not exist or after all
the nodes of the input key are traced, the trie tree generating
unit 150¢a retrieves a key smaller than the input key while
returning a node to a node having an elder node or a child
node of the root node. In other words, the trie tree generating
unit 1504 retrieves a tag key having a smaller priority than
that of the input key in the comparison target nodes. In
addition, when the priorities of the input key and the tag key

US 9,465,860 B2

11

are compared, the remaining key obtained by excluding the
key of the trie part from the input key is compared with the
tag key.

When the input key is “blue”, comparison is performed in
order of the node “u” and the node “1” because comparison
target nodes are the nodes “u” and “1”. The input key “blue”
has a priority smaller than that of the tag key “violet” of the
node “1” and has a priority larger than that of “ack”. In
addition, when the priorities of the input key “blue” and the
tag key “violet” are compared, the comparison is performed
after the key “blue” of the trie part from the root node to the
node “u” is removed from the input key “blue”. Moreover,
when the priorities of the input key “blue” and the tag key
“ack” are compared, the comparison is performed after the
key “bl” of the trie part from the root node to the node “1”
is removed from the input key “blue”.

The trie tree generating unit 150a registers the input key
and the value corresponding to the input key in a node
having a tag key having the minimum priority among tag
keys having a larger priority than that of the input key, and
shifts the tag key that is already registered.

When the input key is “blue”, the trie tree generating unit
150a registers the input key “blue” and the value “4” in the
node “u”. Because the key of the trie part from the root node
to the node “u” is “blu”, the tag key “e” is actually registered
in the node “u”. Moreover, in order to shift the tag key
“blueviolet” registered in the node “u”, the trie tree gener-
ating unit 150a creates a new node “e” below the node “u”
and registers the tag key “blueviolet” in it. Because the key
of the trie part reaching the node “e” is “blue”, the tag key
“violet” is actually registered in the node “e”. The trie tree
illustrated at the right side of FIG. 14 is generated by
executing the registration process as described above. Fur-
thermore, the trie tree generating unit 150a may register
identification information to identify a node having an elder
node. For example, because the node “I” has an elder node
“1” at the right side of FIG. 14, the trie tree generating unit
150a registers identification information in the node “1”.

Now, it will be specifically explained about a process for
generating a trie tree that is performed by the trie tree
generating unit 150a. FIGS. 15 to 24 are diagrams explain-
ing a process for generating a trie tree. Herein, for conve-
nience of explanation, it will be explained about the case
where a trie tree is generated in the order of a key “http://
aaa.aaa/e/”, a value “17, a key “http://aaa.aaa/e/c/”, a value
“2”, a key “http://aaa.aaa/e/c/”, a value “3”, and a key
“http://aaa.aaa/e/”, a value “4”.

As illustrated in FIG. 15, it will be first explained about
the case where the key “http://aaa.aaa/e/” and the value “1”
are added in the state where a node does not exist. The trie
tree generating unit 150a generates a root node (Step S10a).
The trie tree generating unit 150a generates a pointer array
20 corresponding to the root node on real data, and connects
a root node pointer to the pointer array 20. Moreover,
because the pointer array 20 corresponds to the root node,
“TAG” is connected to null (Step S105).

The trie tree generating unit 150a prepares an input key
“http://aaa.aaa/e/” (Step S1la). The trie tree generating unit
150a stores the input key “http://aaa.aaa/e/” in the text table
14 on real data, and connects the pointer of the input key to
the first column “h” of the text table 14 (Step S115).

Because a child node of which the key is the initial
character “h” of the input key “http://aaa.aaa/e/” does not
exist, the trie tree generating unit 150a refers to the root
node. Herein, because the root node does not a tag key, the
priority of the input key “http://aaa.aaa/e/” becomes larger
than that of the tag key of the root node.

10

15

20

25

30

35

40

45

50

55

60

65

12

The trie tree generating unit 150a creates a node of which
the key is “h” below the root node, and connects a remaining
key obtained by excluding the character “h” from the input
key “http://aaa.aaa/e/” to the node “h” as a tag key. The trie
tree generating unit 150a further connects the value “1” of
the input key “http://aaa.aaa/e/” to the node “h” (Step S12a).

The trie tree generating unit 150a generates a pointer
array 21 corresponding to the node “h” on real data, and
connects the pointer array 20 and the pointer array 21
through the key number “0x68” of the pointer array 20.
Moreover, the trie tree generating unit 150a connects “TAG”
of the pointer array 21 to the second column “t” of the text
table 14, and connects “Data” of the pointer array 21 to the
value “1” (Step S12b).

Next, referring to FIG. 16, it will be explained about the
case where the key “http://aaa.aaa/e/c/”” and the value “2” are
added to the trie tree created at Steps S12a and S124. The
trie tree generating unit 150a traces nodes from the root node
to the node “h” at the initial character “h” of the input key
“http://aaa.aaa/e/c/”. Then, the trie tree generating unit 150a
advances the input key “http://aaa.aaa/e/c/” by one pointer
and sets the pointer to the second character “t” (Step S13a).

The trie tree generating unit 150a registers the key
“http://aaa.aaa/e/c” in the text table 14 on real data after one
space of the key “http://aaa.aaa/e/” finally registered in the
text table 14. Then, the trie tree generating unit 150a
connects the pointer of the input key to the second row and
second column character “t” of the text table 14 (Step S135).

Because the node “h” does not have a child node that uses
“t” as a key, the trie tree generating unit 150a compares the
priority of the tag key “ttp://aaa.aaa/e/” of the node “h” and
the priority of the input key “ttp://aaa.aaa/e/c/”” obtained by
removing the trie part “h”. Then, because the 17th character
of the input key is “c” and the 17th character of the tag key
is null, the priority of the input key is larger than that of the
tag key (Step S14). Therefore, the input key “ttp://aaa.aaa/
e/c/” is registered in a node after the node “h”.

Next, referring to FIG. 17, the trie tree generating unit
150a generates a new node “t” by using the second character
“t” of the input key “http://aaa.aaa/e/c” as a key, and
advances the pointer of the input key to the third character
“t” (Step S15a).

The trie tree generating unit 150a generates a pointer
array 22 corresponding to the node “t” on real data, and
connects the pointer array 21 and the pointer array 22
through the key number “0x74” of the pointer array 21.
Moreover, the trie tree generating unit 150a advances the
input key by one pointer, and connects the pointer of the
input key to the second row and third column character “t”
of the text table 14 (Step S155).

The trie tree generating unit 150a registers, as a tag key,
a remaining key “tp://aaa.aaa/e/c” obtained by excluding the
trie part “ht” from the input key “http://aaa.aaa/e/c” in the
node “t” created at Step S15a (Step S16a).

The trie tree generating unit 1504 connects “TAG” of the
pointer array 22 to the second row and third column char-
acter “t” of the text table 14 on real data, and connects
“Data” of the pointer array 22 to the value “2” (Step S165).

Next, referring to FIG. 18, it will be explained about the
case where the input key “http://aaa.aaa/d/” and the value
“3” are added to the trie tree created at Steps S16a and S165.
The trie tree generating unit 150a takes out characters from
the initial character of the input key “http://aaa.aaa/d/”
one-by-one, and traces nodes in order of the nodes “h” and
“t” over the trie tree. Then, the trie tree generating unit 150a
advances the input key “http://aaa.aaa/d/” by two pointers in

US 9,465,860 B2

13

accordance with the number of the traced nodes, and sets the
pointer to the second character “t”.

Then, because the node “t” does not have a child node that
uses “t” as a key, the trie tree generating unit 150a compares
the priority of the tag key “tp://aaa.aaa/e/c” of the node “t”
and the priority of the input key “tp://aaa.aaa/d/” obtained by
removing the trie part “ht”. Then, because the 14th character
of the tag key is “e” and the 14th character of the input key
is “d”, the priority of the tag key becomes larger than that of
the input key (Step S17a).

The trie tree generating unit 150a registers the key
“http://aaa.aaa/d/” on real data after one space of the key
“http://aaa.aaa/e/c” finally registered in the text table. Then,
the trie tree generating unit 150a connects the pointer of the
input key to the third row and fifth column character “t” of
the text table 14. Moreover, when a character string of which
the head is a character connected to “TAG” of the pointer
array 22 is sequentially compared with a character string of
which the head is a character connected to the pointer of the
input key, the priority of the tag key becomes larger than that
of the input key because the 14th character of the tag key is
“e” and the 14th character of the input key is “d” (Step
S175).

The trie tree generating unit 150a returns the pointer of
the input key “http://aaa.aaa/d/” by one pointer to set the
pointer to the second character “t”, and moves to the node
“h” that is the parent node of the node “t”. Then, the trie tree
generating unit 150a compares the priority of the tag key
“ttp://aaa.aaa/e/c” of the node “h” and the priority of the
input key “ttp://aaa.aaa/d/” obtained by removing the trie
part “h”. Then, because the 15th character of the tag key is
“e” and the 15th character of the input key is “d”, the priority
of'the tag key becomes larger than that of the input key (Step
S18a).

The trie tree generating unit 150a connects the pointer of
the input key to the third row and fourth column character
“t” of the text table 14 on real data. Moreover, when a
character string of which the head is a character connected
to “TAG” of the pointer array 22 is sequentially compared
with a character string of which the head is a character
connected to the pointer of the input key, the priority of the
tag key becomes larger than that of the input key because the
15th character of the tag key is “e” and the 15th character of
the input key is “d” (Step S185).

Next, referring to FIG. 19, because the parent node of the
node “h” is the root node, the trie tree generating unit 150a
exchanges the data (tag key, value) of the node “h” for input
data (input key, value). In other words, the trie tree gener-
ating unit 150a registers the remaining key “ttp://aaa.aaa/d/”
obtained by removing the trie part “h” from the input key
“http://aaa.aaa/d/” in the tag key of the node “h”. The trie
tree generating unit 150a further registers the value “3”
corresponding to the input key “http://aaa.aaa/d/” in the
node “h”. Moreover, the trie tree generating unit 150a adds
the trie part “h” to the head of the tag key “ttp://aaa.aaa/e/”
registered in the node “h” and takes out the result as the input
key. Moreover, the trie tree generating unit 150q also takes
out the value “1” associated with the tag key “ttp://aaa.aaa/
e/” (Step S19a).

The trie tree generating unit 150a exchanges the data (tag
key, value) of the node “h” for the input data (input key,
value) on real data. In other words, the trie tree generating
unit 150a connects “TAG” of the pointer array 21 corre-
sponding to the node “h” to the third row and fourth column
character “t” of the text table 14. The trie tree generating unit
150a further connects “Data” of the pointer array 21 to the
value “3”. Then, the trie tree generating unit 150a connects

10

25

30

35

40

45

14

the pointer of the input key to the first row and second
column character “t” of the text table 14. Moreover, the trie
tree generating unit 150a saves the value “1” connected to
“Data” of the pointer array 21 in an input value (Step S195).

The trie tree generating unit 150a moves from the node
“h” to the node “t” at the second character “t” of the input
key “http://aaa.aaa/e/”, and exchanges the data (tag key,
value) of the node “t” for the input data (input key, value).
In other words, the trie tree generating unit 150a registers
the remaining key “tp://aaa.aaa/e/” obtained by removing
the trie part “ht” from the input key “http://aaa.aaa/e/” in the
tag key of the node “t”. The trie tree generating unit 150a
further registers the value “1” corresponding to the input key
“http://aaa.aaa/e/” in the node “t”. Moreover, the trie tree
generating unit 150qa adds the trie part “h” to the head of the
tag key “tp://aaa.aaa/e/c/” registered in the node “t”, and
takes out the result as the input key. Moreover, the trie tree
generating unit 1504 takes out the value “2” associated with
the tag key “ttp://aaa.aaa/e/c/” (Step S20a).

The trie tree generating unit 150a exchanges the data (tag
key, value) of the node “t” for the input data (input key,
value) on real data. In other words, the trie tree generating
unit 150a connects “TAG” of the pointer array 22 corre-
sponding to the node “t” to the first row and third column
character “t” of the text table 14. Moreover, the trie tree
generating unit 150a connects “Data” of the pointer array 22
to the value “1”. Then, the trie tree generating unit 150a
connects the pointer of the input key to the second row and
third column character “t” of the text table 14. Moreover, the
trie tree generating unit 150a saves the value “2” connected
to “Data” of the pointer array 21 in the input value (Step
S205).

Next, referring to FIG. 20, because the node “t” corre-
sponding to the third character of the input key “http://
aaa.aaa/e/c/” does not exist below the node “t”, the trie tree
generating unit 150a generates a new node “t” below the
node “t”. Herein, in the following explanation in order to
distinguish the nodes “t”, the parent-side node “t” is referred
to as the node “t” (parent) and the child-side node “t” is
referred to as the node “t” (child). Then, the trie tree
generating unit 150a sets the pointer of the input key to the
third character “p” (Step S21a).

The trie tree generating unit 150a generates a pointer
array 23 corresponding to the node “t” (child) on real data,
and connects the pointer array 22 and the pointer array 23
through the key number “0x74” of the pointer array 22. The
trie tree generating unit 150qa further connects the pointer of
the input key to the second row and fourth column character
“p” of the text table 14 (Step S215).

Next, referring to FIG. 21, the trie tree generating unit
150a connects the remaining key “p://aaa.aaa/e/c/” obtained
by removing the trie part “htt” from the input key “http://
aaa.aaa/e/c/” to the node “t” (child). The trie tree generating
unit 150a further connects the value “2” corresponding to
the input key “http://aaa.aaa/e/c/” to the node “t” (child)
(Step S22a).

The trie tree generating unit 1504 connects “TAG” of the
pointer array 23 to the second row and fourth column
character “p” of the text table 14 on real data, and opens the
pointer of the input key. The trie tree generating unit 150a
further connects the value “2” to “Data” of the pointer array
23 (Step S22b).

Next, referring to FIG. 22, it will be explained about the
case where the key “http://aaa.aaa/e/” and the value “4” are
added to the trie tree created at Steps S22a and S22b. The
trie tree generating unit 150a sequentially reads characters
from the head of the input key “http://aaa.aaa/e/”” and moves

US 9,465,860 B2

15
to the nodes “h”, “t” (parent), and “t” (child). Then, the trie
tree generating unit 150a sets the pointer of the input key
“http://aaa.aaa/e/” to the fourth character “p” (Step S23a).

The trie tree generating unit 150a registers the key
“http://aaa.aaa/e/” on real data after one space of the key
“http://aaa.aaa/e/d/” finally registered in the text table 14.
Then, the trie tree generating unit 150a connects the pointer
of the input key to the fourth row and sixth column character
“p” of the text table 14 (Step S235).

Next, referring to FIG. 23, because the node “t” (child)
does not have a child node that uses “p” as a key, the trie tree
generating unit 150a compares the priority of the tag key
“p://aaa.aaale/c/” of the node “t” (child) and the priority of
the input key “p://aaa.aaa/e/” obtained by removing the trie
part “htt”. Then, because the 15th character of the input key
is “null” and the 15th character of the tag key is “c”, the
priority of the tag key is larger than that of the input key.

Therefore, the trie tree generating unit 150a returns from
the node “t” (child) to the node “t” (parent) without exchang-
ing the data of the node “t” (child) for the input data, and sets
the pointer of the input key “http://aaa.aaa/e/” to the third
character “t” (Step S24a).

The trie tree generating unit 150a connects the pointer of
the input key to the fourth row and sixth column character
“p” of the text table 14 on real data. Moreover, when a
character string of which the head is a character connected
to “TAG” of the pointer array 23 is sequentially compared
with a character string of which the head is a character
connected to the pointer of the input key, the trie tree
generating unit 150a determines that the priority of the tag
key is larger than that of the input key because the 15th
character of the input key is “null” and the 15th character of
the tag key is “c”. Then, the trie tree generating unit 150a
sets the pointer of the input key to the fourth row and fifth
column character “t” (Step S24b).

Next, referring to FIG. 24, the trie tree generating unit
150a compares the priority of the tag key “tp://aaa.aaa/e/” of
the node “t” (parent) and the priority of the input key
“tp://aaa.aaa/e/” obtained by removing the trie part “ht”.
Then, the priorities of the input key and the tag key are the
same (the input key and the tag key are the same). In this
case, the trie tree generating unit 150a adds the value “4”
corresponding to the input key “http://aaa.aaa/e/” to the node
“t” (Step S25a).

The trie tree generating unit 150a connects the pointer of
the input key to the fourth row and fifth column character “t”
of the text table 14 on real data. Moreover, when a character
string of which the head is a character connected to “TAG”
of the pointer array 22 is sequentially compared with a
character string of which the head is a character connected
to the pointer of the input key, the trie tree generating unit
150a determines that the priorities of the tag key and the
input key are the same (the tag key and the input key are the
same) because the character strings up to null are the same.
Then, the trie tree generating unit 150a adds the value “4”
to “Data” of the pointer array 22 (Step S25b).

As illustrated in FIGS. 15 to 24, because one key is
assigned to one node when the trie tree generating unit 150a
generates the trie tree 1405, an amount of used memory of
the trie tree 1405 can be reduced. Moreover, when a new
input key is assigned to the trie tree 1405, the trie tree
generating unit 150a compares only the tag key of a com-
parison target node with the input key and newly registers
the tag key without comparing all the tag keys and the input
key. Therefore, the trie tree generating unit 150a can gen-

10

15

20

25

30

35

40

45

50

55

60

65

16

erate the trie tree 1405 in such a manner that tag keys are
arranged in depth first order while reducing a processing
load.

It is assumed that various data (pointer array, text table,
and the like) corresponding to real data illustrated in FIGS.
15 to 24 are stored in the storage unit 140.

Returning to the explanation of FIG. 10, the trie tree
searching unit 1505 is a processing unit that executes a
process for extracting a summary value of the values reg-
istered in the trie tree 1405 and a process for retrieving a
value corresponding to a predetermined key from the trie
tree 1405.

First, it will be explained about the case where the trie tree
searching unit 1505 extracts a summary value of the values
registered in the trie tree 1405. The trie tree searching unit
1505 reads out the characters of the designated input key
from the head one-by-one, traces nodes, and sequentially
outputs the tag keys and values registered in the nodes in
association with each other, in order to extract a summary
value. When a node has the registered several values, the trie
tree searching unit 1505 may add the values or may sepa-
rately output the values. The trie tree searching unit 1505
according to the present embodiment adds the values and
outputs the result as an example.

FIGS. 25 to 27 are diagrams explaining a summary value
extraction process. As illustrated in FIG. 25, the trie tree
1405 has the node “h”, the node “t” (parent), and the node
“t” (child) that are sequentially connected below the root
node. It is assumed that the node “h” registers the tag key
“ttp://aaa.aaa/d/” and the value “3”, the node “t” (parent)
registers the tag key “tp://aaa.aaa/e” and the values “1, 47,
and the node “t” (child) registers the tag key “p://aaa.aaa/
e/c” and the value “2”.

In FIGS. 25 to 27, it will be explained about a summary
value extraction process when the input key “http://aaa.aaa/
e/” is designated. In FIG. 25, the trie tree searching unit 1505
sets the first character of the input key “http://aaa.aaa/e/” to
the pointer, and moves to the node “h” in accordance with
the character of the pointer.

Because the node “h” registers the tag key “ttp://aaa.aaa/
d”” and the value “3”, the trie tree searching unit 1505
outputs the key “http://aaa.aaa/d/” obtained by adding the
trie part “h” to the head of the tag key “ttp://aaa.aaa/d/” and
the value (total value) “3” (Step S30a).

The trie tree searching unit 1505 registers the input key
“http://aaa.aaa/d/” in the fourth row and third column of the
text table 14 on real data, and connects the pointer of the
input key to the fourth row and third column. The trie tree
searching unit 1505 further connects the pointer of the
present node to the pointer array 21. Moreover, the trie tree
searching unit 1505 outputs the character string “http://
aaa.aaa/d/” between anteroposterior nulls of the character
connected to “TAG” of the pointer array 21 corresponding
to the node “h” and the value “3” connected to “Data” (Step
S305).

Referring to FIG. 26, the trie tree searching unit 1505 sets
the second character of the input key “http://aaa.aaa/e/” to
the pointer, and moves from the node “h” to the node “t”
(parent) in accordance with the character of the pointer.
Because the node “t” (parent) registers the tag key “tp://
aaa.aaa/e/” and the values “1, 4”, the trie tree searching unit
1504 outputs the key obtained by adding the trie part “ht” to
the head of the tag key “tp://aaa.aaa/e/”” and the value “5”
obtained by adding the values “1, 4” (Step S31a).

The trie tree searching unit 1505 shifts the destination of
the pointer of the input key by one character on real data, and
connects the pointer of the input key to the fourth row and

US 9,465,860 B2

17

fourth column character “t” of the text table 14. The trie tree
searching unit 1505 further connects the pointer of the
present node to the pointer array 22. Moreover, the trie tree
searching unit 1505 outputs the character string “http://
aaa.aaa/e/” between anteroposterior nulls of the character
connected to “TAG” of the pointer array 22 corresponding
to the node “t” (parent) and the total value “5” of the values
“1, 4” connected to “Data” (Step S315).

Referring to FIG. 27, the trie tree searching unit 1505 sets
the third character of the input key “http://aaa.aaa/e/” to the
pointer, and moves from the node “t” (parent) to the node “t”
(child) in accordance with the character of the pointer.
Because the node “t” (child) registers the tag key “p://
aaa.aaa/e/c/” and the value “2”, the trie tree searching unit
1504 outputs the key obtained by adding the trie part “htt”
to the head of the tag key “tp://aaa.aaa/e/c/” and the value
(total value) “2” (Step S32a).

The trie tree searching unit 1505 shifts the destination of
the pointer of the input key by one character on real data, and
connects the pointer to the fourth row and fifth column
character “t” of the text table 14. The trie tree searching unit
1504 further connects the pointer of the present node to the
pointer array 23. Moreover, the trie tree searching unit 1506
outputs the character string “http://aaa.aaa/e/c/” between
anteroposterior nulls of the character connected to “TAG” of
the pointer array 23 corresponding to the node “t” (child)
and the value (total value) “2” connected to “Data” (Step
S325).

As illustrated in FIGS. 25 to 27, the trie tree searching unit
1504 can sequentially reads input keys and trace the trie tree
14054 to output a summary value corresponding to the input
keys.

Next, it will be explained about the case where the trie tree
searching unit 1505 retrieves a value corresponding to the
designated input key from the trie tree 1405. Because the trie
tree 1405 is created in such a manner that tag keys are
arranged in depth first order, it is only necessary that the trie
tree searching unit 1505 compares the input keys and the tag
keys registered in comparison target nodes. Moreover, when
the input keys and nodes included in the comparison target
nodes are compared, a processing load can be further
reduced by using a binary search.

Now, it will be explained about a retrieval process when
a binary search is used. FIGS. 28 to 31 are diagrams
explaining a retrieval process when a binary search is used.
As illustrated in FIG. 28, the trie tree 1405 has the node “h”,
the node “t” (parent), and the node “t” (child) that are
sequentially connected below the root node. It is assumed
that the node “h” registers the tag key “ttp://aaa.aaa/d/” and
the value “3”, the node “t” (parent) registers the tag key
“tp://aaa.aaa/e” and the values “1, 4”, and the node “t”
(child) registers the tag key “p://aaa.aaa/e/c” and the value
“27.

It will be explained about a retrieval process when the
input key “http://aaa.aaa/d/” is designated with reference to
FIGS. 28 to 31. In FIG. 28, the trie tree searching unit 1505
reads out characters in sequence from the initial character of
the input key “http://aaa.aaa/d/”, and moves from the root
node in order of the node “h”, the node “t” (parent), and the
node “t” (child). Then, the trie tree searching unit 1505 sets
the pointer of the input key “http://aaa.aaa/d/” to “p”
obtained by shifting the pointer from the initial position “h”
by three characters. The trie tree searching unit 1505 adds a
stack to the transited nodes (Step S40a).

The trie tree searching unit 1505 adds the stack to the
pointer arrays 21, 22, and 23 respectively corresponding to
the node “h”, the node “t” (parent), and the node “t” (child)

10

15

20

25

30

35

40

45

50

55

60

65

18

on real data. Moreover, the trie tree searching unit 1505
connects the pointer of the present node to the pointer array
23 (Step S404). Herein, for convenience of explanation, the
input key “http://aaa.aaa/d/” is not described. However, it is
assumed that the information on the input key “http://
aaa.aaa/d/” is stored in the text table 14.

Next, referring to FIG. 29, the trie tree searching unit
1505 moves to the node “t” (parent) of the middle of the
stack and returns the pointer of the input key by which the
transition of the node is performed. Herein, because the node
is returned from the node “t” (child) to the node “t” (parent),
the trie tree searching unit 1505 sets the pointer of the input
key “http://aaa.aaa/d/” to “t” (third character) obtained by
returning the pointer from “p” by one character.

Then, the trie tree searching unit 1505 compares the
priority of the tag key “tp://aaa.aaa/e/” of the node “t” and
the priority of the input key “tp://aaa.aaa/d/” obtained by
removing the trie part “ht”. Then, because the 14th character
of the input key is “d” and the 14th character of the tag key
is “e”, the trie tree searching unit 1505 determines that the
priority of the tag key is larger than that of the input key
(Step S41a). When the priority of the tag key of the node “t”
(parent) is larger than the priority of the input key, nodes
after the node “t” (parent) do not have tag keys to be
retrieved.

The trie tree searching unit 1505 moves the pointer of the
present node to the pointer array 22 connected to the middle
of the stack on real data. Then, the trie tree searching unit
1505 compares the character string “tp://aaa.aaa/e/” after the
character connected to “TAG” of the pointer array 22 and the
remaining input key “tp://aaa.aaa/d/” obtained by excluding
the trie part “ht”. Then, because the 14th character of the
input key is “d” and the 14th character of the tag key is “e”,
the trie tree searching unit 15056 determines that the priority
of'the tag key is larger than that of the input key (Step S415).

Next, it will be explained with reference to FIG. 30. As
explained in FIG. 29, when the priority of the tag key of the
node “t” (parent) is larger than the priority of the input key,
nodes after the node “t” (parent) do not have tag keys to be
retrieved. Therefore, the trie tree searching unit 1505 deletes
the components of the stack added to the node “t” (parent)
and the node “t” (child) that correspond to the latter half of
the stack.

The trie tree searching unit 1505 moves to the node “h”
of'the middle of the stack, and returns the pointer of the input
key by which the transition of the pointer is performed.
Herein, because the node is returned from the node *“t”
(parent) to the node “h”, the trie tree searching unit 1505 sets
the pointer of the input key “http://aaa.aaa/d/” to “t” (second
character) obtained by returning the pointer from “t” (third
character) by one character (Step S42a).

The trie tree generating unit 150a moves the pointer of the
present node to the pointer array 21 connected to the middle
of the stack on real data (Step S425).

It will be explained with reference to FIG. 31. The trie tree
searching unit 1505 compares the priority of the tag key
“ttp://aaa.aaa/d/” of the node “h” and the priority of the input
key “ttp://aaa.aaa/d/” obtained by removing the trie part “h”.
Then, because the priorities of the tag key and the input key
are the same (the tag key and the input key are the same), the
trie tree searching unit 1505 outputs the value “3” and the
key “http://aaa.aaa/d/” obtained by adding the trie part “h”
to the head of the tag key “ttp://aaa.aaa/d/” connected to the
node “h” as the retrieval result (Step S43a).

The trie tree searching unit 1505 compares, on real data,
the priority of the character string “ttp://aaa.aaa/d/” after the
character connected to “TAG” of the pointer array 21 and the

US 9,465,860 B2

19

priority of the remaining input key “tp://aaa.aaa/d/” obtained
by removing the trie part “h”. Then, because the priorities of
the tag key and the input key are the same (the tag key and
the input key are the same), the trie tree searching unit 1506
outputs the character string “http://aaa.aaa/d/” between
anteroposterior nulls of the character connected to “TAG” of
the pointer array 21 and the value “3” connected to “Data”
(Step S435).

Next, it will be explained about a retrieval process when
the binary search is used by using the other example with
reference to FIGS. 32 to 35. As illustrated in FIG. 32, the trie
tree 1405 has nodes “a”, “b”, and “c” that are connected
below the root node. It is assumed that the node “a” registers
a tag key “aa” and a value “3”, the node “b” registers a tag
key “c” and a value “1”, and the node “c” registers a tag key
“b” and a value “2”. In this case, the relationship between
the node “b” and the node “c” is like that the node “b” is an
elder node and the node “c” is a younger node.

It will be explained about a retrieval process when an
input key “ac” is designated with reference to FIGS. 32 to
35. In FIG. 32 the trie tree searching unit 1505 reads out “a”
from the input key “ac” and shifts the pointer of the input
key from “a” to “c” The trie tree searching unit 1505 further
adds a stack to the node “a” (Step S50q).

The trie tree searching unit 1505 adds the stack to the
pointer array 21 corresponding to the node “a” on real data.
Moreover, the trie tree searching unit 150b connects the
pointer of the present node to the pointer array 21. The trie
tree searching unit 1505 sets the pointer of the input key to
the first row and 14th column character “c” of the text table
14 (Step S505).

Next, it will be explained with reference to FIG. 33. The
trie tree searching unit 1505 reads out “c” designated by the
pointer from the input key “ac”, and moves to the node “c”
At the time point at which it moves to the node “c” because
the priority of the tag key registered in the ancestral node of
the node “a” is smaller than all the priorities of the input key

’, the pnority of the tag key should be excluded from a
retrieval object. Therefore, the trie tree searching unit 1505
once empties the stack and newly adds the node “c” to the
stack. Moreover, the trie tree searching unit 1505 shifts the
pointer of the input key from “c” by one character and sets
the pointer to “null” (Step SSla)

The trie tree searching unit 1505 designates the pointer
array 23 as the present node on real data. The trie tree
searching unit 15056 deletes the stack connected to the
pointer array 21 and adds a stack to the pointer array 23.
Moreover, the trie tree searching unit 1505 sets the pointer
of the input key to the first row and the 15th column
character “null” of the text table 14 (Step S515).

Next, it will be explained with reference to FIG. 34.
Because the character designated by the pointer is “null”, the
trie tree searching unit 1505 sets the node “c” of the middle
of the stack as the present node, and compares the priority
of the tag key “b” of the node “c” and the priority of “null”
obtained by excluding the trie part “ac”. As the comparison
result, the trie tree searching unit 1505 determines that the
priority of the tag key is larger than the priority of the input
key (Step S52a).

The trie tree searching unit 1505 sets the pointer array 23
corresponding to the middle of the stack as the present node
on real data, and compares the character string of which the
head is the character connected to “TAG” of the pointer
array 23 and “null” connected to the pointer of the input key.
As the comparison result, the trie tree searching unit 1505
determines that the priority of the tag key is larger than the
priority of the input key (Step S525).

“o”

25

30

40

45

55

20

Next, it will be explained with reference to FIG. 35.
Because the priority of the tag key is larger than the priority
of the input key, the trie tree searching unit 1505 deletes the
stack of the node “c” that registers the tag key. Because all
the stacks disappear and the tag key identical with the input
key “ac” does not exist, the trie tree searching unit 1505
outputs the effect that matching data does not exist (Step
S53a).

Because the priority of the tag key is larger than the
priority of the input key, the trie tree searching unit 1505
deletes the stack connected to the pointer array correspond-
ing to the node “c” on real data. Because all the stacks
disappear and the tag key identical with the input key “ac
does not exist, the trie tree searching unit 1505 outputs the
effect that matching data does not exist (Step S535).

As described above, it has been explained about the case
where the trie tree searching unit 1505 executes the retrieval
process by using the binary search with reference to FIGS.
28 to 35. However, the trie tree searching unit 1505 may not
necessarily use the binary search. FIGS. 36 to 40 are
diagrams explaining a retrieval process when a binary search
is not used. As illustrated in FIG. 36, the trie tree 1405 has
nodes “b”, “a”, “b”, and “c” that are connected below the
root node. Herein, in order to distinguish the two nodes “b”,
the node “b” corresponding to the child node of the root
node is referred to as a node “b(1)” and the other node “b”
is referred to as a node “b(2)”.

It is assumed that the node “b(1)” registers a tag key
and a value “1”, the node “a” registers a tag key “aa” and a
value “3”, the node “b(2)” registers a tag key “c” and avalue
“17, and the node “c” registers a tag key “b” and a value “2”.

Moreover, it will be explained about a retrieval process
when an input key “baca” is designated with reference to
FIGS. 36 to 40. In FIG. 36, the trie tree searching unit 1505
sets the pointer of the input key to the initial character “b”,
and moves from the root node to the node “b(1)” in
accordance with “b” designated by the pointer. Then, the trie
tree searching unit 1505 sets the pointer of the input key to
“a” obtained by shifting the pointer from “b” by one
character (Step S60a).

The trie tree searching unit 1505 registers the input key
“baca” in the text table 14 on real data, and connects the
pointer of the input key to the second row and first column
“b” of the text table 14. The trie tree searching unit 1505
moves the pointer of the present node from the pointer array
20 to the pointer array 21 in accordance with “b” connected
to the pointer of the input key, and sets the pointer of the
input key to “a” obtained by shifting one character (Step
S605).

Next, it will be explained with reference to FIG. 37. The
trie tree searching unit 1505 moves from the node “b(1)” to
the node “a” in accordance with “a” designated by the
pointer, and sets the pointer of the input key to “c” obtained
by shifting one character from “a” (Step Sé61a).

The trie tree searching unit 150b moves, on real data, the
pointer of the present node from the pointer array 21 to the
pointer array 22 in accordance with “a” connected to the
p01nter of the input key, and sets the pointer of the input key

“c” obtained by shifting one character (Step S615).

Next it will be explained with reference to FIG. 38. The
trie tree searching unit 1505 moves from the node “a” to the
node “c” in accordance with “c” designated by the pointer,
and sets the pointer of the input key to “a” obtained by
shifting one character from “c” (Step S62a)

The trie tree searching unit 150b moves, on real data, the
pointer of the present node from the pointer array 22 to a
pointer array 24 in accordance with “c” connected to the

IRt

US 9,465,860 B2

21

pointer of the input key, and sets the pointer of the input key
to “a” obtained by shifting one character (Step S625).

It will be explained with reference to FIG. 39. Because a
child node corresponding to “a” designated by the pointer
does not exist in the node “c”, the trie tree searching unit
1505 compares the priority of the tag key “b” registered in
the node “c” and the priority of the input key “a” obtained
by removing the trie part “bac”. As the comparison result,
the trie tree searching unit 1505 determines that the priority
of'the tag key is larger than the priority of the input key (Step
S63a).

The trie tree searching unit 1505 compares, on real data,
the priority of the character “b” connected to “TAG” of the
pointer array 24 and the priority of the character “a” con-
nected to the pointer of the input key. As the comparison
result, the trie tree searching unit 1505 determines that the
priority of the tag key is larger than the priority of the input
key (Step S63b).

It will be explained with reference to FIG. 40. Because the
node “c” has an elder node (node “b(2)”"), nodes (node “a”,
node “b(1)”) before the node “c” do not have a tag key
identical with the input key and thus the trie tree searching
unit 1505 outputs the effect that there is not corresponding
data (Step S64).

Meanwhile, when a key to be deleted from the trie tree
14054 is designated, the trie tree searching unit 1505 deletes
the designated input key from the trie tree 1406. FIG. 41 is
a diagram explaining a deletion process. Herein, it will be
explained about the case where a tag key “black” and a value
“1” are deleted from a trie tree illustrated at the left side of
FIG. 41.

Similarly to the retrieval process described above, the trie
tree searching unit 1505 first searches a node “1” having the
same tag key as that of the input key “black”, and deletes the
tag key “ack” and the value “1” registered in the node “1”.

Then, the trie tree searching unit 1505 registers, in the
node “1”, the tag key “e(blue)” and the value “4” of the node
“u” that is the eldest node of the node “1”. Moreover, the trie
tree searching unit 1505 registers, in the node “u”, the tag
key “blueviolet” and the value “3” of the node “e” that is the
eldest node of the node “u”, and deletes the node “€” from
the trie tree. The trie tree searching unit 1505 deletes the key
“black” and the value “1” from the trie tree illustrated at the
left side of FIG. 41 to generate a trie tree illustrated at the
right side of FIG. 41.

Next, it will be explained about various types of process-
ing procedures of the retrieval device 100 according to the
present embodiment. First, it will be explained about the
case where the retrieval device 100 according to the present
embodiment generates the trie tree 1405. FIG. 42 is a
flowchart illustrating processing procedures of a trie tree
generation process.

As illustrated in FIG. 42, the trie tree generating unit 150a
generates a root node (Step S101), and determines whether
the next input data (key, value) exists in the registration data
management table 140a (Step S102).

When it is determined that the next input data does not
exist in the registration data management table 140a (Step
S103: No), the trie tree generating unit 150qa terminates the
process. On the other hand, when the next input data is
registered in the registration data management table (Step
S103: Yes), the trie tree generating unit 150a reads out
unread input data (Step S104) and executes a data addition
process (Step S105).

Next, it will be explained about processing procedures of
the data addition process illustrated at Step S105 of FIG. 42.
Herein, two examples are explained about the case where the

20

40

45

50

22

data addition process is performed without using a binary
search and the case where the data addition process is
performed by using the binary search.

FIGS. 43 and 44 are flowcharts illustrating processing
procedures of the data addition process in which the binary
search is not used. As illustrated in FIG. 43, the trie tree
generating unit 150q sets the root node as the present node
(Step S150) and determines whether the input key is null
(Step S151).

When the input key is not null (Step S152: No), the trie
tree generating unit 150a refers to a child node by using the
key of the initial character of the input key and determines
whether a child node exists (Step S153). When a child node
exists (Step S154: Yes), the trie tree generating unit 150a
reads the first one character of the input key, advances the
pointer of the input key by one character, moves to the child
node by using the read character as a key (Step S155), and
moves the process control to Step S151.

On the other hand, when a child node does not exist (Step
S154: No), the trie tree generating unit 150a moves the
process control to Step S156.

Meanwhile, when the input key is null at Step S152 (Step
S152: Yes), the trie tree generating unit 150a refers to the
information on the node (Step S156), and determines
whether the priority of the tag key is the same as that of the
input key (the tag key is the same as the input key) (Step
S157). When the priority of the tag key and the priority of
the input key are the same (Step S158: Yes), the trie tree
generating unit 150q adds an input value (value correspond-
ing to input key) to the present node (Step S159), and
terminates the data addition process.

On the other hand, when the priority of the input key is
different from that of the tag key (Step S158: No), the trie
tree generating unit 150a determines whether the priority of
the tag key is larger than that of the input key (Step S160).
When the priority of the tag key is smaller than that of the
input key (Step S161: No), the trie tree generating unit 150a
moves the process control to Step S164.

When the priority of the tag key is larger than that of the
input key (Step S161: Yes), the trie tree generating unit 150a
determines whether an elder node exists or whether a parent
node is the root node (Step S162). When an elder node does
not exist and a parent node is not the root node (when it does
not satisfy a condition) (Step S163: No), the trie tree
generating unit 150a returns the pointer of the input key by
one character, moves to the parent node (Step S164), and
moves the process control to Step S160.

On the other hand, when an elder node exists or a parent
node is the root node (when it satisfies the condition) (Step
S163: Yes), the trie tree generating unit 150a exchanges the
tag key and the value of the present node for the input key
and the input value (Step S168), and moves the process
control to Step S165.

Meanwhile, when the priority of the tag key is smaller
than that of the input key at Step S161 (Step S161: No), the
trie tree generating unit 1504 refers to a child node by using
the key of the initial character of the input key and deter-
mines whether a child node exists (Step S165).

When a child node exists (Step S166: Yes), the trie tree
generating unit 1504 reads the first one character of the input
key, advances the pointer of the input key by one character,
moves to the child node by using the read character as a key
(Step S167), and moves the process control to Step S168.

On the other hand, when a child node does not exist (Step
S166: No), the trie tree generating unit 150a generates a new
node (Step S169), reads the first one character of the input
key, advances the pointer of the input key by one character,

US 9,465,860 B2

23

and moves from the present node to the new node by using
the read character as a key (Step S170).

The trie tree generating unit 150a adds the input key to the
new node as a tag key (Step S171), adds the input value to
the new node (Step S172), and terminates the data addition
process.

FIGS. 45 to 47 are flowcharts illustrating processing
procedures of a data addition process in which the binary
search is used. The trie tree generating unit 150q sets the root
node as the present node (Step S180), and determines
whether the input key is null (Step S181).

When the input key is null (Step S182: Yes), the trie tree
generating unit 150a¢ moves the process control to Step
S190. On the other hand, when the input key is not null (Step
S182: No), the trie tree generating unit 150q refers to a child
node by using the key of the initial character of the input key
and determines whether a child node exists (Step S183).

When a child node exists (Step S184: Yes), the trie tree
generating unit 150q determines whether the child node is an
eldest node (Step S185), and moves the process control to
Step S188 when the child node is an eldest node (Step S186:
Yes).

On the other hand, when the child node is not an eldest
node (Step S186: No), the trie tree generating unit 150a sets
a stack to null (Step S187), reads the first one character of
the input key, advances the pointer of the input key by one
character, and moves to the child node by using the read
character as a key (Step S188). The trie tree generating unit
150a adds the moved node to the stack (Step S189), and
moves the process control to Step S181.

Meanwhile, when a child node does not exist at Step S184
(Step S184: No), the trie tree generating unit 150a deter-
mines whether the stack is empty (Step S190). When the
stack is not empty (Step S191: No), the trie tree generating
unit 150a sets the middle data of the stack as the present
node and shifts the pointer of the input key by which the
pointer is moved (Step S192).

Referring to FIG. 46, the trie tree generating unit 150q
determines whether the priority of the tag key and the
priority of the input key are the same (Step S193). When the
priority of the tag key and the priority of the input key are
the same (Step S194: Yes), the trie tree generating unit 150a
adds the input value to the present node (Step S195).

On the other hand, when the priority of the input key is
different from that of the tag key (Step S194: No), the trie
tree generating unit 150a determines whether the priority of
the tag key is larger than that of the input key (Step S196).

When the priority of the tag key is larger than that of the
input key (Step S197: Yes), the trie tree generating unit 150a
deletes the second half of the stack that includes the middle
of the stack (Step S199), and moves the process control to
Step S190 of FIG. 45.

On the other hand, when the priority of the tag key is
smaller than that of the input key (Step S197: No), the trie
tree generating unit 150a deletes the first half of the stack
that includes the middle of the stack (Step S198), and moves
the process control to Step S190 of FIG. 45.

Meanwhile, when the stack is empty at Step S191 of FIG.
45 (Step S191: Yes), the trie tree generating unit 150qa refers
to a child node by using the key of the initial character of the
input key and determines whether a child node exists
referring to FIG. 47 (Step S200).

When a child node exists (Step S201: Yes), the trie tree
generating unit 150qa reads the first one character of the input
key, advances the pointer of the remaining input key by one
character, and moves to the child node by using the read
character as a key (Step S202). Then, the trie tree generating

30

40

45

24

unit 150a exchanges the tag key and the value of the present
node for the input key and the input value (Step S203), and
moves the process control to Step S200.

On the other hand, when a child node does not exist (Step
S201: No), the trie tree generating unit 150a generates a new
node (Step S204), reads the first one character of the input
key, advances the pointer of the remaining input key by one
character, and moves from the present node to the new node
by using the read character as a key (Step S205). The trie
tree generating unit 150a adds the input key to the new node
as a tag key (Step S206) and adds the input value to the new
node (Step S207).

Next, it will be explained about the case where the
retrieval device according to the present embodiment per-
forms a retrieval process by using the trie tree 1405. Herein,
it will be explained about the case where a retrieval process
is executed without using a binary search and the case where
the retrieval process is executed by using the binary search.

First, it will be explained about processing procedures of
a retrieval process in which the binary search is not used.
FIG. 48 is a flowchart illustrating processing procedures of
a retrieval process in which the binary search is not used. As
illustrated in FIG. 48, the trie tree searching unit 1506 sets
the root node as the present node (Step S300) and determines
whether an input key is null (Step S301).

When the input key is not null (Step S302: No), the trie
tree searching unit 1505 refers to a child node by using the
key of the initial character of the input key and determines
whether a child node exists (Step S303). When a child node
does not exist (Step S304: No), the trie tree searching unit
1505 moves the process control to Step S306.

On the other hand, when a child node exists (Step S304:
Yes), the trie tree searching unit 1505 reads the first one
character of the input key, advances the pointer of the input
key by one character, moves to the child node by using the
read character as a key (Step S305), and moves the process
control to Step S301.

Meanwhile, when the input key is null at Step S302 (Step
S302: Yes), the trie tree searching unit 1505 refers to
information on the node and determines whether the priority
of the tag key and the priority of the input key are the same
(Step S306). When the priority of the tag key and the priority
of the input key are the same (Step S307: Yes), the trie tree
searching unit 1505 outputs the data (value) of the present
node (Step S308).

On the other hand, when the priority of the input key is
different from that of the tag key (Step S307: No), the trie
tree searching unit 1505 determines whether the priority of
the tag key is larger than that of the input key (Step S309).
When the priority of the tag key is smaller than that of the
input key (Step S310: No), the trie tree searching unit 1505
moves the process control to Step S314.

On the other hand, when the priority of the tag key is
larger than that of the input key (Step S310: Yes), the trie tree
searching unit 1505 determines whether an elder node exists
or whether a parent node is the root node (Step S311).

When an elder node does not exist and a parent node is not
the root node (when it does not satisfy a condition) (Step
S312: No), the trie tree searching unit 15056 returns the
pointer of the input key by one character and moves to the
parent node (Step S313).

On the other hand, when an elder node exist or when a
parent node is the root node (it satisfies the condition) (Step
S312: Yes), the trie tree searching unit 1505 outputs the
effect that matching data does not exist (Step S314).

Next, it will be explained about processing procedures of
the retrieval process in which the binary search is used.

US 9,465,860 B2

25

FIGS. 49 and 50 are flowcharts illustrating processing
procedures of the retrieval process in which the binary
search is used. As illustrated in FIG. 49, the trie tree
searching unit 1505 sets the root node as the present node
(Step S350) and determines whether an input key is null
(Step S351).

When the input key is null (Step S352: Yes), the trie tree
searching unit 1505 moves the process control to Step S360
of FIG. 50. On the other hand, when the input key is not null
(Step S352: No), the trie tree searching unit 1505 determines
whether a child node exists by using the key of the initial
character of the input key (Step S353).

When a child node does not exist (Step S354: No), the trie
tree searching unit 1505 moves the process control to Step
S360 of FIG. 50. On the other hand, when a child node exists
(Step S354: Yes), the trie tree searching unit 15056 deter-
mines whether the child node is an eldest node (Step S355).

When the child node is an eldest node (Step S356: Yes),
the trie tree searching unit 1505 moves the process control
to Step S358. On the other hand, when the child node is not
an eldest node (Step S356: No), the trie tree searching unit
1504 sets the stack to null (Step S357).

The trie tree searching unit 1505 reads the first one
character of the input key, advances the pointer of the input
key by one character, and moves to the child node by using
the read character as a key (Step S358). Then, the trie tree
searching unit 1505 adds the moved node to the stack (Step
S359) and moves the process control to Step S351.

Meanwhile, when the input key is null at Step S352 (Step
S352: Yes) or when a child node does not exist at Step S354
(Step S354: No), the trie tree searching unit 1506 moves the
process control to Step S360 of FIG. 50.

In FIG. 50, the trie tree searching unit 1505 determines
whether the stack is empty (Step S360). When the stack is
empty (Step S361: Yes), the trie tree searching unit 1505
outputs the effect that there is not matching data (Step S362).

On the other hand, when the stack is not empty (Step
S361: No), the trie tree searching unit 1505 sets the middle
node of the stack as the present node and shifts the pointer
of the input key by which the pointer is moved (Step S363).

The trie tree searching unit 1505 determines whether the
priority of the tag key and the priority of the input key are
the same (Step S364). When the priority of the tag key and
the priority of the input key are the same (Step S365: Yes),
the trie tree searching unit 1505 outputs the data (value) of
the present node (Step S366).

On the other hand, when the priority of the input key is
different from that of the tag key (Step S365: No), the trie
tree searching unit 15056 determines whether the priority of
the tag key is larger than that of the input key (Step S367).

When the priority of the tag key is smaller than that of the
input key (Step S368: No), the trie tree searching unit 1505
deletes the first half of the stack that includes the middle of
the stack (Step S369) and moves the process control to Step
S360.

On the other hand, when the priority of the tag key is
larger than that of the input key (Step S368: Yes), the trie tree
searching unit 1505 deletes the second half of the stack that
includes the middle of the stack (Step S370) and moves the
process control to Step S360.

Next, it will be explained about a process in which the
retrieval device 100 extracts a summary value. FIG. 51 is a
flowchart illustrating processing procedures of a summary
value extraction process. As illustrated in FIG. 51, the trie
tree searching unit 1505 sets the root node as the present
node (Step S400), and determines whether a child node
exists (Step S401).

40

45

55

60

26

When a child node exists (Step S402: Yes), the trie tree
searching unit 1505 moves to an eldest node among child
nodes (Step S403), processes and outputs the various data of
the present node (Step S404), and moves the process control
to Step S401. At Step S404, when several values are
registered in the eldest node, for example, the trie tree
searching unit 1505 performs a process for adding the values
and outputs the added value.

On the other hand, when a child node does not exist (Step
S402: No), the trie tree searching unit 1505 determines
whether a younger node exists (Step S405). When a younger
node exists (Step S406: Yes), the trie tree searching unit
1505 moves to the next younger node (Step S407) and
moves the process control to Step S404.

On the other hand, when a younger node does not exist
(Step S406: No), the trie tree searching unit 1505 moves to
the parent node (Step S408) and determines whether the
present node is the root node (Step S409).

When the present node is not the root node (Step S410:
No), the trie tree searching unit 1505 moves the process
control to Step S405. On the other hand, when the present
node is the root node (Step S410: Yes), the trie tree searching
unit 1505 terminates the process.

Next, it will be explained about a deletion process in
which the retrieval device 100 deletes the data of the trie tree
1404. FIGS. 52 and 53 are flowcharts illustrating processing
procedures of a deletion process. As illustrated in FIG. 52,
the trie tree searching unit 15056 sets a root node as the
present node (Step S450) and determines whether an input
key is null (Step S451).

When the input key is not null (Step S452: No), the trie
tree searching unit 1505 refers to a child node by using the
key of the initial character of the input key and determines
whether a child node exists (Step S453). When a child node
does not exist (Step S454: No), the trie tree searching unit
1505 moves the process control to Step S456.

On the other hand, when a child node exists (Step S454:
Yes), the trie tree searching unit 1505 reads the first one
character of the input key, advances the pointer of the input
key by one character, moves to the child node by using the
read character as a key (Step S455), and moves the process
control to Step S451.

Meanwhile, when the input key is null at Step S452 (Step
S452: Yes), the trie tree searching unit 1506 refers to
information on the node and determines whether the priority
of the tag key is the same as that of the input key (Step
S456).

When the priority of the tag key and the priority of the
input key are not the same (Step S457: No), the trie tree
searching unit 1505 determines whether the priority of the
tag key is larger than that of the input key (Step S458). When
the priority of the tag key is smaller than that of the input key
(Step S459: No), the trie tree searching unit 1505 moves the
process control to Step S463.

When the priority of the tag key is larger than that of the
input key (Step S459: Yes), the trie tree searching unit 1505
determines whether an elder node exists or whether the
parent node is the root node (Step S460).

When an elder node does not exist and the parent node is
not the root node (when it does not satisty a condition) (Step
S461: No), the trie tree searching unit 1505 returns the
pointer of the input key by one character to move to the
parent node (Step S462), and moves the process control to
Step S456.

US 9,465,860 B2

27

On the other hand, when an elder node exists or when the
parent node is the root node (Step S461: Yes), the trie tree
searching unit 1505 outputs the effect that deletion data does
not exist (Step S463).

Meanwhile, when the priority of the tag key is the same
as that of the input key at Step S457 (Step S457: Yes), the
trie tree searching unit 1505 moves the process control to
Step S464 of FIG. 53.

The trie tree searching unit 1505 determines whether data
(value) to be deleted exists (Step S464). When data to be
deleted does not exist (Step S465: No), the trie tree search-
ing unit 1505 outputs the effect that deletion data does not
exist (Step S466).

On the other hand, when data to be deleted exists (Step
S465: Yes), the trie tree searching unit 1505 determines
whether other data (value) exists (Step S467). When other
data exists (Step S468: Yes), the trie tree searching unit 1505
terminates the process.

On the other hand, when other data does not exist (Step
S468: No), the trie tree searching unit 1505 determines
whether a child node exists (Step S469). When a child node
does not exist (Step S470: No), the trie tree searching unit
1504 deletes an edge for the present node of the parent node
(releases connection) and deletes the present node (Step
S471).

On the other hand, when a child node exists (Step S470:
Yes), the trie tree searching unit 1505 sets data of the eldest
node as data of the present node (Step S472) to move to the
eldest node (Step S473) and moves the process control to
Step S469.

As described above, because one tag key is associated
with one node and thus a node not having a tag key does not
exist when the trie tree generating unit 150qa creates the trie
tree 1404, the retrieval device 100 according to the present
embodiment can improve a memory utilization ratio.

Moreover, because a tag key having a low priority is
registered in a node close to a root node when the trie tree
generating unit 150q registers a tag key in each node of the
trie tree 1405, the retrieval device 100 according to the
present embodiment can narrow down a node region that is
a comparison target and thus can improve the processing
efficiency of a retrieval process when the trie tree searching
unit 1505 performs the retrieval process and the like.

In the meantime, among the processes described in the
present embodiments, the whole or a part of processes that
have been automatically performed can be manually per-
formed. Alternatively, the whole or a part of processes that
have been manually performed can be automatically per-
formed in a well-known method. Also, processing proce-
dures, control procedures, concrete titles, and information
including various types of data and parameters, which are
described in the document and the drawings, can be arbi-
trarily changed except that they are specially mentioned.

Each component of each device illustrated in the drawings
is a functional concept. Therefore, these components are not
necessarily constituted physically as illustrated in the draw-
ings. In other words, the specific configuration of dispersion/
integration of each device is not limited to the illustrated
configuration. Therefore, all or a part of each device can
dispersed or integrated functionally or physically in an
optional unit in accordance with various types of loads or
operating conditions. Furthermore, all or a part of each
process function performed by each device can be realized
by CPU and a program that is analyzed and executed by the
CPU or can be realized by a hardware by wired logic.

FIG. 54 is a diagram illustrating the hardware configura-
tion of a computer 10 corresponding to the retrieval device

10

15

20

25

30

35

40

45

50

55

60

65

28

100 according to the present embodiment. As illustrated in
FIG. 54, the computer (the retrieval device) 10 includes an
input device 11, a monitor 12, an RAM (random access
memory) 13, a ROM (read only memory) 14, a communi-
cation controller 15 that communicates with other devices
via a network, a medium reader 16, a CPU (central process-
ing unit) 17, and an HDD (hard disk drive) 18, which are
connected via a bus 19.

The HDD 18 stores therein a trie tree generation program
186 and a trie tree search program 18c¢ that has the same
function as that of the retrieval device 100 described above.
The CPU 17 reads and executes the trie tree generation
program 185 and the trie tree search program 18c¢ to start a
trie tree generation process 17a and a trie tree search process
176.

Herein, the trie tree generation process 17a corresponds to
the trie tree generating unit 150a illustrated in FIG. 10.
Moreover, the trie tree search process 175 corresponds to the
trie tree searching unit 1505 illustrated in FIG. 10.

The HDD 18 further stores therein various data 18a
corresponding to the data stored in the storage unit 140
illustrated in FIG. 10. The CPU 17 reads out the various data
18a stored in the HDD 18, loads the various data in the RAM
13, and constructs a trie tree by using various data 13a.

As described above, according to an aspect of the present
invention, because a computer associates one tag key with
one node and removes a node not having a tag key by
executing a program stored in a storage medium, a memory
utilization ratio can be improved.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although the
embodiment of the present invention has been described in
detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.

What is claimed is:

1. A non-transitory computer-readable storage medium
that stores a program making a computer realize a character
string registration function, the character string registration
function comprising:

storing in a storage device a trie tree in which nodes

corresponding to predetermined characters are con-
nected in accordance with a tree structure;

reading out, characters of a new character string in

sequence one-by-one from a head thereof to trace nodes
included in the trie tree in accordance with characters
corresponding to the nodes and determining a specific
node that is located at a lowest side from nodes having
an elder node among the traced nodes, the elder node
and the specific node being located in a same layer and
being connected to a same node that is directly located
in a layer above the elder node and the specific node,
the elder node being located at an upper side of the
specific node;

reading out the characters of the new character string from

the specific node sequentially;

determining whether a child node of the specific node

exists by using a key of an initial character of the new
character string when a priority of character string
registered in the specific node is smaller than the
priority of the new character string;

US 9,465,860 B2

29

adding a new node as a child node of the specific node to
be corresponded with the read character when the child
node does not exist; and

registering the new character string and the priority to the

child node of the specific node, wherein
a previous character string, registered previously in a last
node that registered a character string most recently, is
registered into the child node traced by the previous
character string from the last node when the new
character string, that is different from the character
string previously registered and the previous character
string can trace a child node from the last node, has
registered into one of traced nodes, and
the previous character string in the last node is registered
into the new node that is added below the last node
when the new character string, that is different from the
character string previously registered and the previous
character string cannot trace any child node from the
last node, has registered into one of traced nodes.
2. The non-transitory computer-readable storage medium
according to claim 1, wherein the character string registra-
tion function further comprises setting a priority to each
character string registered in each node and registering each
character string in each node on the basis of the priority.
3. The non-transitory computer-readable storage medium
according to claim 2, wherein the program making the
computer further realize a character string search function
comprises:
reading out, when retrieving a search character string,
characters of the search character string in sequence
from a head thereof to trace the nodes of the trie tree;

determining a specific node that is located at a lowest side
from nodes having an elder node among the traced
nodes; and

sequentially reading out the characters of the search

character string from the specific node to retrieve a
character string identical with the search character
string from character strings registered in nodes
included in a route up to a finally arriving node to arrive
at finally.

4. The non-transitory computer-readable storage medium
according to claim 3, wherein the character string registra-
tion function includes reading out the characters of the new
character strings in sequence from the head to trace the
nodes of the trie tree and determining a child node of a root
node as the specific node when a node having an elder node
does not exist among the traced nodes.

5. The non-transitory computer-readable storage medium
according to claim 1, wherein the character string registra-
tion function includes reading out the characters of the new
character strings in sequence from the head to trace the
nodes of the trie tree and determining a child node of a root
node as the specific node when a node having an elder node
does not exist among the traced nodes.

6. The non-transitory computer-readable storage medium
according to claim 1, wherein the character string registra-
tion function further comprises dividing the predetermined
characters expressed with a bit stream into several bit
streams and storing in the storage device the trie tree in
which nodes corresponding to the divided bit streams are
connected in accordance with the tree structure.

7. A trie tree generation method comprising:

storing in a storage device a trie tree in which nodes

corresponding to predetermined characters are con-
nected in accordance with a tree structure;

reading out characters of a new character string in

sequence one-by-one from a head thereof to trace nodes

10

15

20

25

30

35

40

45

50

55

60

65

30

included in the trie tree in accordance with characters
corresponding to the nodes and determining a specific
node that is located at a lowest side from nodes having
an elder node among the traced nodes,

the elder node and the specific node being located in a

same layer and being connected to a same node that is
directly located in a layer above the elder node and the
specific node, the elder node being located at an upper
side of the specific node;

reading out the characters of the new character string from

the specific node sequentially;

determining whether a child node of the specific node

exists by using a key of an initial character of the new
character string when a priority of character string
registered in the specific node is smaller than the
priority of the new character string;

adding a new node as a child node of the specific node to

be corresponded with the read character when the child
node does not exist; and

registering the new character string and the priority to the

child node of the specific node, wherein

a previous character string, registered previously in a last

node that registered a character string most recently, is
registered into the child node traced by the previous
character string from the last node when the new
character string, that is different from the character
string previously registered and the previous character
string can trace a child node from the last node, has
registered into one of traced nodes, and

the previous character string in the last node is registered

into the new node that is added below the last node
when the new character string, that is different from the
character string previously registered and the previous
character string cannot trace any child node from the
last node, has registered into one of traced nodes.

8. The trie tree generation method according to claim 7,
further comprising: setting a priority to each character string
registered in each node and registering each character string
in each node on the basis of the priority.

9. A trie tree generation device comprising:

a memory; and

a processor coupled to the memory, wherein the processor

executes a process comprising:

storing in a storage device a trie tree in which nodes
corresponding to predetermined characters are con-
nected in accordance with a tree structure;

reading out, characters of a new character string in
sequence one-by-one from a head thereof to trace
nodes included in the trie tree in accordance with
characters corresponding to the nodes and determin-
ing a specific node that is located at a lowest side
from nodes having an elder node among the traced
nodes, the elder node and the specific node being
located in a same layer and being connected to a
same node that is directly located in a layer above the
elder node and the specific node, the elder node
being located at an upper side of the specific node;

reading out the characters of the new character string
from the specific node sequentially;

determining whether a child node of the specific node
exists by using a key of an initial character of the
new character string when a priority of character
string registered in the specific node is smaller than
the priority of the new character string;

adding a new node as a child node of the specific node
to be corresponded with the read character when the
child node does not exist; and

US 9,465,860 B2

31

registering the new character string and the priority to
the child node of the specific node, wherein

a previous character string, registered previously in a last

node that registered a character string most recently, is
registered into the child node traced by the previous
character string from the last node when the new
character string, that is different from the character
string previously registered and the previous character
string can trace a child node from the last node, has
registered into one of traced nodes, and

the previous character string in the last node is registered

into the new node that is added below the last node
when the new character string, that is different from the
character string previously registered and the previous
character string cannot trace any child node from the
last node, has registered into one of traced nodes.

10. The trie tree generation device according to claim 9,
wherein the process further comprises setting a priority to
each character string registered in each node and registering
each character string in each node on the basis of the priority.

11. The trie tree generation device according to claim 9,
wherein the process further comprises dividing the prede-
termined characters expressed with a bit stream into several
bit streams and storing in the storage device the trie tree in
which nodes corresponding to the divided bit streams are
connected in accordance with the tree structure.

12. The non-transitory computer-readable storage
medium according to claim 1, wherein the adding assigns
the new node that has a smaller priority closer to a root node.

#* #* #* #* #*

10

15

20

25

30

32

